

The Climate Modelling Users Group (CMUG) in the ESA Climate Change Initiative: role and activities

Thierry Phulpin, CNES/Meteo France, thierry.phulpin@cnes.fr

and the CMUG: Roger Saunders, Mark Ringer, Paul Van der Linden, (Met Office Hadley Centre)

Alex Loew, Sylvia Kloster, Iryna Khlystova, Stefan Kinne, (MPI/ESM), David Tan, Dick Dee, (ECMWF), S.Planton (Meteo-France)

ABSTRACT: The European Space Agency (ESA) has established the Climate Modelling User Group (CMUG), to ensure that a climate system perspective is at the centre of its Climate Change Initiative (CCI) programme, and to provide a dedicated forum through which the Earth Observation and Climate Modelling Communities can work closely together. The CMUG is a consortium of European climate modelling and reanalysis centres whose main purpose is to provide a bridge between the satellite dataset producers and the climate modelling community. The CMUG is actively promoting awareness of the CCI within the climate modelling community and gathering their detailed requirements for the 13 Essential Climate Variables (ECVs) being generated by the programme. The CMUG is assessing the user requirements, data access and product specification established by each team and is also ensuring cross-team coordination to establish consistent data sets and the inclusion uncertainty estimates across the programme. In addition, the CMUG will provide an independent assessment of the datasets for climate research applications by using them for model validation, assimilation and long term trend analysis: this will highlight the benefits of the new CCI datasets to the climate modelling community and ensure they are exploited as soon as possible once they are considered suitable for release.

ESA CCI project

CCI objectives

esa

Realize the full potential of the long-term global EO archives that ESA, together with its Member states, has established over the last thirty years.....

..... as a significant and timely contribution to the ECV databases required by the United Nations Framework Convention on Climate Change

6 Years / 75 M

Phase 1: (3y)

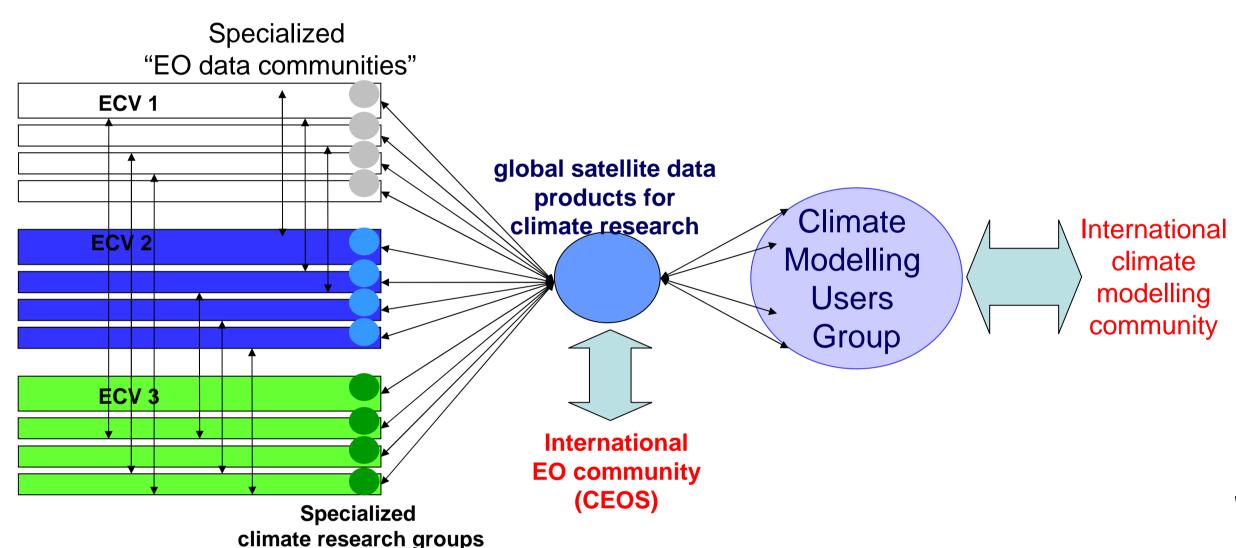
Scientific user consultation, detailed specifications

Phase 2: (3y)

Operational Systems implementation, production

Phase 3: (6y!)

User assessment, assimilation


ECVs

ECV	Science Leader
cloud_cc	DWD
ozone_cci	BIRA
aerosol_cci	DLR/FMI
ghg_cci	U. Bremen
sea_ice_cci	NERSC
sst_cci	U. Edinburgh
land_cover_cci	UCL
sea_level_cc	CLS
ocean_colour_cci	PML
glaciers_cci	U. Zurich
fire _cci	U.Alcala
ice_sheet_cci	DTU Space
soil_moisture_cci	TU Wien
Climate Modelling User Group	UKMetO - Hadley Centre

CMUG Composition

Met Office Hadley Centre MPI-Meteorology ECMWF MétéoFrance IFS, ERA, MACC Alex Loew Silvia Kloster Stefan Kinne 🚮 Iryna Khlystova

Role of CMUG in the CCI

CMUG Mandate

- Refining of scientific requirements from GCOS
- Provide technical feedback to CCI projects
- Provide reanalysis data to CCI projects
- Assess the global satellite climate data records (CDRs) produced from the 13 CCI consortia
- Look specifically at required consistencies across ECVs from a user viewpoint.
- Promote and report on the use of the CCI datasets by modellers
- Interact with related climate modelling and reanalysis initiatives.

User Requirements

- •CMUG collected the needs of the modelling community
- Express specific requirements as a function of application
- Emphasised the need for uncertainties
- Provide feedback to GCOS

Uses of satellite data for climate

- To ascertain decadal and longer term changes in the climate
- Detection & attribution of observed variations to natural and anthropogenic forcings
- Evaluate the physical processes most relevant to reducing uncertainty in climate prediction
- To develop, constrain and validate climate models thus gaining confidence in projections of future change
- Input or comparison to reanalyses (e.g. ERA-CLIM, EURO4M)
- Seasonal and decadal model initialisation (ocean, land surface, stratosphere)
- To identify biases in current and past in situ measurements (e.g. radiosondes, buoys)

2010-2012 => CCI phase 1 Cardinal Requirements

esa

- Develop and validate algorithms to meet GCOS ECV requirements for (consistent, stable, error-characterized) global satellite data products from multi-sensor data archives Optimize impact of ESA EO missions data on climate data
- Produce, within R&D context, most complete and consistent possible multi-sensor global satellite data products for climate
- research and modelling Generate complete specifications for an operational production
- Strengthen inter-disciplinary cooperation between international earth observation, climate research and modelling communities, in pursuit of scientific excellence

User requirements

Each ECV consortium collected the needs of its community (Climate scientists) and produced:

- Users requirements
- Products specification document

© Crown copyrigh

Data access requirement document

SST URD vs PSD

1 hour

1 month

1 month

1 month

0.1 K

0.1 K

0.126 K

0.2 K

0.1 K

0.1 K

0.1 K

0.1 K

0.2 K

0.1 K/decade

0.1 K/decade

0.05 K/decade

0.1 K/decade

0.1 K/decade

0.1 K/decade

0.1 K/decade

Horizontal resolution

0.05° (~5.6 km)

1 km

8 km

500 km

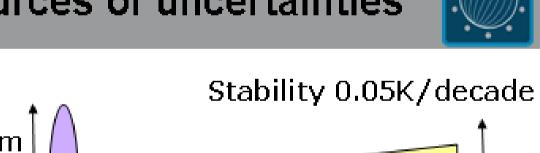
10 km

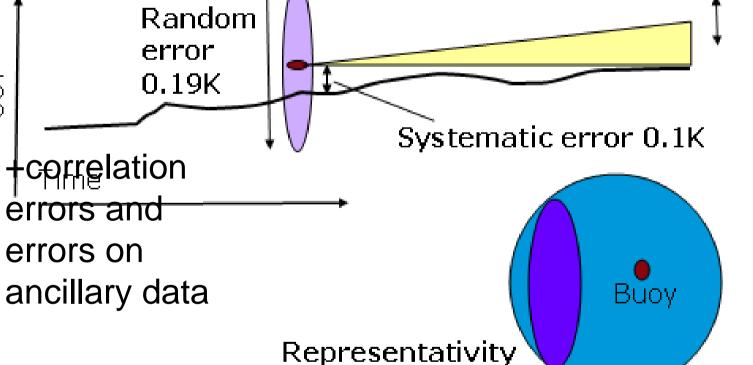
100 km

50 km

50 km

1 km


SST CCI PSD


CMUG

CMUG

CMUG

Different sources of uncertainties

and sampling

Comparison with multimodel ensemble

Assessment of TCDR

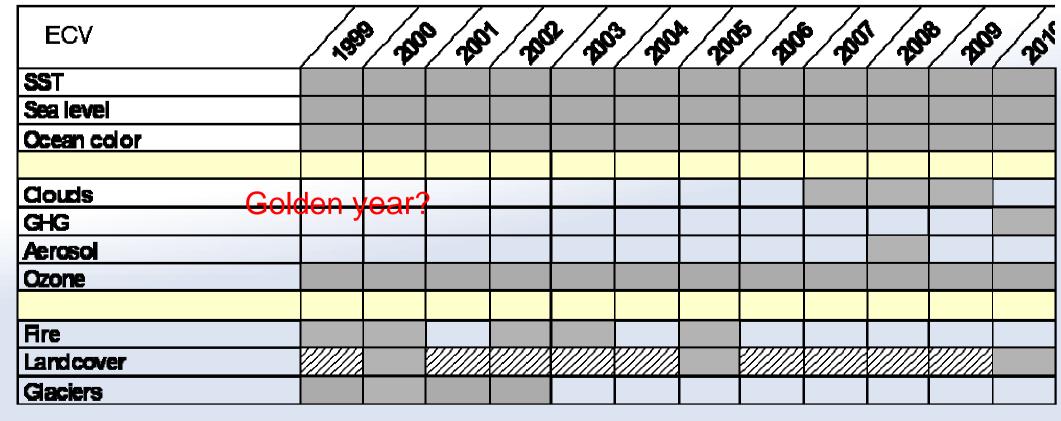
Check inter ECV consistency

Write together with ECV teams a

summary paper for the modelling

Select a golden year

community


Algorithms and validation

- •Round Robin to select best algorithm (in 2012)
- Estimation of uncertainties
- Netcdf-cf compliant format
- Easy access via Earth System Grid

Will deliver in 2012 precursor datasets

dded-value

Time series proposed

Application

Target

Trend monitoring

Breakthrough

Threshold

Seasonal forecasting

Decadal forecasting

Climate quality

Reanalysis

Example of assesment : TCW from Globvapour project

Multimodel mean vs. obs: JJA

Multimodel difference from GV SSMI-MERIS for JJA (as before) GlobVapour SSI-MERIS total column water ERA-Interim also used as independent

> Inter-model standard deviation for JJA for the seven models used.

Cnes CENTRE NATIONAL D'ÉTUDES SPATIALES

The importance of consistency

- Issues with inconsistent observations that happen - Soil moisture increase without precipitation
 - Fire without albedo change
 - Fire without biomass
 - Fire without landcover change
- Consistency check of ECV products should be envisaged (e.g. CCI landcover plans consistency check with cci_fire and ancillary vegetation products)
- Non consistent data products can produce
 - Ambiguities in data analysis
 - Less fun in scientifically work with the data → less acceptance

Opportunity: currently no consistent suite of products existing

