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Abstract A. Soil Moisture Validation at 42 FLUXNET Stations

Ecosystem carbon and hydrological process models require gridded input surface Surface Soil Moisture (<5cm) Timeseries Correlations AR Relative to MERRA Timeseries Stdev. Legend
meteorology, usually provided by model reanalysis and remote sensing _ KFAV:*K:',?:ZE, AisEs — S::‘g}"s' Plots
observati , ", lysi: y can be rather poor for some surface 0.8f -@ -6 i T B KFwith True’ RMSEs ’ — KFwith NR. RMSEs  — MERRA (Standard)
data fields, such as soil moisture, and reanalyses typically do not take full advantage o w iﬁ? o N::m ':,ii‘lgl‘!eg_ RMSEs e e _ w:ﬁfPCP*AMSH
of available remotely sensed information, such as soil moisture, or precipitation, or %E}_ﬁ é é F with Trip. Colloc RMSEs I .
A U " . 0.6+ 4 @ GMAO GPCP + AMSR-E Data Assim. #® Analysis improvement

ET over land. A major factor limiting use of remotely-sensed surface information are 24 GMAO AMSR-E Only Data Assim. :

) . ; ) é 9 v declines over dense
unknown error fields associated with these observations. Nevertheless, remotely @ GMAO GPCP Only .

. . P . . . © GMAO MERRA Land Replay vegetation as a result of
sensed observations contain significant independent information that can 0.4} % 1 A MERRA (Standard) AMSR-E soil moisture signal
p ially improve the yofr lysis fields provided their error structure is A AVSRE g .

X N - " L . . . . A TRVIM & P-PET degradation.
known. Here we investigate a statistical teck to jointly errors and Daily Seasonal Full T
combine 23 independent datasets to improve regional soil moisture state estimates = Merged datasets improve median correlations (p < 0.05; error bars represent Cl medians) * Noise inflates AMSR-E
over the continental USA. We include model reanalysis (MERRA), satellite relative to GMAO MERRA land model data assimilation [1,2]. Correlation improvement is most variance over dense
microwave remote sensing retrievals of surface soil moisture (AMSR-E) and substantial for the shorter timescale (daily) component . \ vegetation.
precipitation (TRMM 3B42), and remote-sensing based ET (MODIS) datasets. The # MERRA substantially
results are comparable to a more sophisticated ilation of similar datase Soil Moisture Error Performance?! 02 underestimates soil moisture
within the MERRA land rru:.»del [1,2]. T.hIS |nt!|ceftes tI.mt knowing the observation Daily Seasonal Analysis 0.4 o = variance at both daily and
error structure and combining observations within a simple state-space framework w 0 11 15 2 24 29 33 11 15 2 24 29 33 seasonal timescales for
benefits soil moisture state estimates as much as data assimilation using a detailed g R2=0.91 Daily R2 = 0.87 @ seasonal Analysis Vegetation Water Content [kg m2]? dense vegetation.
land model. The results provide important feedback for di ing physical land &z — 9 . g B Daily Analysis ) )
model and remote sensing algorithm inaccuracies. K o . . A MERRA (Standard) * Despite success for dataset merging Error Variance (%) Attributed to the
&R ) B dt. : g;wMSx;P o :t daily Itlmesc::le.s,ttl:\e;elakso?al Seasonal Component
= = £ = o . - imescales contain the bulk of . = -

Objecuves and Hyp0theses & o - o overall soil moisture variance. This i
1) Develop a relatively simple, computationally efficient method for jointly o , 2 , 4 6 8 5, 0 15 20 A 6 8 ultimately limits potential

estimating surface soil moisture relative error & ‘true’ states using several True’ RMSE [% vol.] . True’ RMSE [% vol.] True’ RMSE [% vol.] . improvement for methods that
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Methods
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The statistical system state equation represents uncertain system dynamics with a simple AR(1) time-series patterns reflect expected
model, in contrast to the physics-based differential equations typically used in data assimilation. The Kalman e y . . . .
filter (KF) provides an algorithm to optimally estimate the mean of the state vector when the system and AMSR-E soil moisture signal - Errors are favorably estlmat.ed & improvement is greatest for short (daily)
observations are linear equations and the uncertainty is from additive Gaussian noise. The ‘optimal’ weighting degradation over dense timescale components, but with reduced seasonal performance; however, much
depends on the relative uncertainty between the system and observation equations. vegetation. of the OVefa" variance is i d Wlth the | p
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0 Soil Water Index: A simple antecedent time series model [3] is used to integrate precipitation and ET precipitation are complementary & offset each other depending on vegetation

data into an indicator of soil moisture storage prior to filtering. information. biomass levels.
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Eigenvector and Kalman gain weights are similar but not equivalent. Neither TC, nor NR techniques are
theoretically optimal estimates under conditions present for most real applications.
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complementary information for improved regional soil moisture predictions.
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¥ The methods are flexible & can be applied to other land parameters in addition to

0 soil moisture.
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FLUXNET Sites with Soil
Moisture

0 Satellite-based P-ET: This dataset uses GPCP precipitation and a satellite-derived daily ET dataset to
calculate monthly P-ET [8, 9]. The monthly values are used to calculate a monthly soil water index. Monthly
values are then interpolated to smooth daily seasonal values using cubic splines. This dataset is merged with

TRMM soil water index prior to merging with MERRA and AMSR-E.
(Additional Sites located in

Temperate Europe and Asia)

0 All datasets are co-registered to a 25-km global EASE grid.




