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Interactions between the climate system and vegetation 
exhibit complex feedbacks. Climate dynamics control 
many aspects of ecological function, whilst changes in 
vegetation influence carbon, water and energy budgets 
directly affecting local and global climate. The National 
Ecological Observatory Network (NEON) is a continental 
scale facility that will collect biogeochemical and 
biogeophysical data from 60 sites in the US over 30 
years.  
Estimates of these fluxes at regional and continental 
scales are required to diagnose, understand and predict 
the response of the global water and carbon cycles to a 
changing climate. To perform both spatial extrapolation 
from NEON sites and temporal forecasting we are 
developing a model-data fusion framework in which 
NEON data can be combined with the Community Land 
Model. Our goal is to produce optimal solutions for model 
states, fluxes and parameter values, with their associated 
uncertainties, at regional to continental scales.  

Background 

The Community Land Model (CLM) is used as the land 
component in the Community Earth System Model 
(CESM). It simulates terrestrial ecosystem processes 
including the cycling of energy, water, carbon and 
nitrogen. CLM is driven by a limited set of climate 
variables, which may come from site observations, 
reanalysis or a coupled atmospheric model, while the 
sensitivity of ecosystem processes to climate is controlled 
by the initial states and parameter sets of the model.  
An initial step has been to evaluate the performance of 
CLM-CN at a number of existing flux tower sites with long 
data records including Harvard Forest, Howland Forest 
and Niwot Ridge. Looping available site climate 
observations we spin up the model for 2000 years under 
pre-industrial conditions, then use a 150 year long 
transient run with increasing CO2 concentrations and 
nitrogen deposition up to the present day. Typically, we 
find energy fluxes to be more accurately simulated than 
carbon fluxes (Figure 1). 
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Future Work 

Perfect Model Experiment 

We will continue undertaking a series of PMEs to test the 
ability of the ensemble filter, as implemented in DART, to 
update a number of CLM states. We will use a suite of 
synthetic observations of carbon and water fluxes and 
pools available at different temporal frequencies based on 
those that will be made at NEON sites in the future and 
which are available as remote sensing products.  
We will then extend the DART state vector to include CLM 
parameters and test how we can us this ensemble 
approach in parameter optimization. Will we investigate 
how  this approach works with parameters which control 
processes operating at very different timescales 
In tandem we will investigate how to assimilate data into a 
spun-up model when the true initial state of the system at 
the time when observations are available is unknown and 
the impacts of parameter optimization on model spin up. 

Figure 1. Observed (blue) and modeled (red) carbon 
and water fluxes at Harvard Forest FLUXNET site 

Figure 2. CLM/NEON data assimilation scheme 
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quasi-equilibrium state of CLM 
reached after spin-up, and the 
short-term carbon dynamics 
reflect the resultant re-
adjustment of the whole model 
state, rather than processes 
controlled by the parameters 
directly. This has important 
implications for data 
assimilation,  high-lighting the 
difficulty in relying on NEE 
measurements alone and 
the need for additional data 
constraints. We will also 
have to address how to best 
initialize a data assimilation 
run that relies on a 
previously spun-up model 
state. 

Prior to estimating parameters through data assimilation we are undertaking parameter sensitivity analyses to identify 
parameters to optimize. At first we are assessing parameters contained in the plant functional type (PFT) physiology 
parameter namelist file. Here we show results from perturbing four parameters: (i) leaf carbon to nitrogen ratio (leafcn); (ii) 
fraction of leaf N in rubisco (flnr); (iii) specific leaf area at top of canopy (slatop); and (iv) allocation ratio between fine root 
carbon and leaf carbon (froot_leaf). Each parameter was perturbed individually over a range of 0.3 to 1.7 of the default value 
at 0.1 increments to give 15 ensemble members, the eighth member being equivalent to the default value, and the model 
then run forward 100 years, initialized with restart files created from a transient run. Each model ensemble member was 
compared with flux tower observations over the first 13 years and perturbing these parameters individually over this range 
does not result in modeled carbon fluxes in better agreement with observations. However, it is clear that the model responds 
to the parameter perturbation at a number of different time scales and the long-term effects of the parameter perturbation 
can differ greatly from the short-term effects (Figure 3). This is, in part, because the parameter perturbation alters the 

Parameter sensitivity analysis 

Figure 3. Annual NEE calculated using default parameter values (red) and 14 
parameter value perturbations (blue) and scatter plots of annual NEE against 

parameter value at six time intervals 
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Data assimilation in carbon cycle science 

Data assimilation is a general term for methods that systematically combine information from observations with information 
from a model to achieve an understanding of the system that is more accurate than the observations or the model 
independently. The data assimilation approach adopted by carbon cycle scientists draws on tools developed in meteorology 
and applied mathematics to support numerical weather prediction. The goal of carbon data assimilation is often parameter, 
rather than state, estimation (as is usually the case in NWP). The reason for this is that parameter estimates in carbon cycle 
models give insight into process-level responses to environmental variation, e.g., the temperature sensitivity of respiration or 
the photosynthetic response to humidity. In addition, carbon modeling typically probes coupled systems with very different 
time constants (minutes to decades or longer) that must be considered simultaneously, whereas effects of “slow” geophysical 
processes typically appear in NWP models as initial or boundary conditions. While reanalysis of atmospheric and oceanic 
data can reveal the role of slowly varying (typically oceanic) processes, diagnosis of the role of slower processes is a key 
challenge in carbon modeling. Our approach has been to use ensemble filter techniques, approximate Monte Carlo solutions 

We are currently setting up a perfect model, or observing 
system simulation, experiment (PME). Starting from a 
‘spun up’ global CLM-CN case for year 2000 we advance 
a 40-member ensemble of the model globally at 1.9 x 2.5 
degree resolution for 120 days at 6hrly time steps. Each 
instance of CLM is coupled with an individual from an 
ensemble of data atmospheres, each an equally plausible 
output from a previous DA exercise with the CESM 
atmosphere model. This causes a divergence in CLM 
states across the ensemble. This spread of CLM states 
provides the initial conditions for the PME. A single 
instance of CLM from the ensemble is then assigned to 
be the ‘truth’ and run forward. Daily ‘observations’ of leaf 
carbon (leafc) are collected at sites (grid cells) across the 
globe by adding Gaussian noise to the actual leafc state 
at these locations. These ‘observations’ are then 
assimilated by DART as the whole 40-member ensemble 
is run forward. Below is an illustration of preliminary 
results showing priors and posteriors of leaf carbon in a 
model grid cell at 60°W, 4°S for six days when synthetic 
observations were assimilated using DART. 

Figure 4. Prior and Posterior distributions of leaf 
carbon in a single grid cell for six days of assimilation 

to the DA problem that have grown rapidly in popularity since 
their first description in the 1990s (Evensen 1994). By using 
careful software engineering, it is possible to develop a state-
of-the-art ensemble filtering system that is mostly 
independent of the geophysical model and observations 
being assimilated. Such a system is the Data Assimilation 
Research Testbed (DART), a community facility for ensemble 
DA developed and maintained at the National Center for 
Atmospheric Research (NCAR) which provides a number of 
enhancements to basic filtering algorithms.  
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