Use of Hurst Analysis and Renyi Entropy to Detect and Characterize PDO Impacts on Climate Variability in Alaska \#T105B
UNE Fant
${ }^{1}$ J. Talbot, ${ }^{1}$ U.S. Bhatt, ${ }^{\mathbf{D}} \mathrm{D}$. E. Newman, ${ }^{\mathbf{2}}$ R. Wackerbauer, ${ }^{3}$ R. Sanchez and ${ }^{4}$ I.V. Polyakov, ${ }^{1}$ H. Angeloff, ${ }^{5}$ R. Thoman, ${ }^{1}{ }^{1}$. Bieniek
${ }^{1}$ Geophysical Institute \& Dept. Atmospheric Sciences at U. Alaska Fairbanks (UAF), ${ }^{2}$ Dept. of Physics UAF, ${ }^{3}$ Carlos III, Dept. of Physics, ${ }^{4}$ International Arctic Research Center, UAF ${ }^{5}$ NOAA/NWS, Fairbanks World Climate Research Program, Open Science Conference, Denver CO, October 25, 2011

- Hurst analysis indicates SAT becomes less random at 5-15 year timescale at various Alaska stations after 1976.
- Renyi analysis displays a tendency towards more order after 1976. (Potential usefulness for seasonal predictability) - NCEP/NCAR Reanalysis SAT also displays shift towards more persistence/order after 1976.
- Stations with enhanced persistence have increased oceanic influence (more maritime) after 1976.

Goal and Method

Goal: Apply methods from nonlinear dynamics community to characterize observations and climate models. These methods provide additional tools with which we can better validate GCMs.
2 Nonlinear Methods:
a) Hurst Exponent (Long time scales 5-15 yrs)

- Rescaled Range Method
- $\mathrm{H}=0.5$ random, $\mathrm{H}<0.5$ antipersistent, $\mathrm{H}>0.5$ persistent (predictable)
b) Renyi Entropy (Short time scales ~ 10 days)
- take the anomaly data set, and transform to 0's \& 1's
e.g. $\quad\{0.12,-\mathbf{0 . 0 2}, 0.73,1.23,0.67,-0.09,-0.24 \ldots\}$
becomes $\{1, \quad \mathbf{0}, \quad 1, \quad 1, \quad 1, \quad 0, \quad 0 \ldots\}\}$
- Count clusters of numbers called 'words', e.g. 000,001,010 etc
- Bigger (smaller) q weights the entropy with more (less) probable words Data: a) Daily Alaska station T and SLP are from NCDC Global Summary of the Day data set. (1946-2007).
b) NCEP/NCAR reanalysis, 20th Century Reanalysis, CCSM4
c) Zhang et al. (2004) SLP based storm track data

