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tropopause temperature. However, its spacial and temporal : — in OLR values adjacent to these monsoon regions (Fig. 7). un -
variability and the quantitative evaluation of its relationship with Fig. 1: Matsuno-Gill pattern with '
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Fig. 7: Scatterplots ...
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during the northern and southern summers (Fig. 2). In the NPM domain, interannual variation in the HSI-1 values is related to that in - :’,:;:,f;;;‘ | . | .
Convective activities are present adjacent to monsoon regions the OLR values (Fig. 8), associated with the ENSO cycle with about a half-year “F ¥ ometir] 7 yommeroar
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Matsuno-Gill pattern, we define two preliminary indices as follows: cycle, consistent)i/vith Nishi et al.'s [2010] % j Eb " for (top) the cases reﬂec_tlng the
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5. Integrated Index SURREO o, OLR 2 - |
HSI-1 is integrated from a positive linear relation between HSI-R OO

and HSI-K. This was derived by the first basis function of an 8. Summary
empirical orthogonal function (EOF) analysis with HSI-R and HSI-K We have established the index representing a horseshoe-shaped temperature structure in the tropical tropopause,

in the Eastern Hemisphere (Fig. 5).

which resembles the Matsuno-Gill pattern. Its seasonal variability is significantly related to that observed in convective
Fig. 5: Frequency of occurrence for HSI-K and HSI-R activities adjacent to three monsoon regions: the SAM and NPM areas during the northern summer and the AUM area
in the Eastern Hemisphere. Red solid line indicates during the southern summer. ENSO-related variabilities are found in each region, especially it is dominant during the

the linear regression line of the first EOF mode. 5‘5‘5““"‘2;‘S|‘_’K‘ 2345 southern summer with shifting eastward in El Nino years.
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