Progress towards a merged satellite upper tropospheric and stratospheric water vapor data set

Sean M. Davis¹,², Karen H. Rosenlof³
NOAA Earth System Research Laboratory, Chemical Sciences Division, Boulder, CO, USA; Sean.M.Davis@noaa.gov
¹Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO, USA.

Abstract

Vertical profiles of humidity from the upper troposphere to stratosphere have been retrieved from several different remote sounding and solar occultation satellite retrievals since the late 1970s. These include MLS, HALOE, and most recently, ACE-FTS and Aura/MLS, among others. Here, we present ongoing work aimed at combining these measurements into a geographically gridded data set that can be used for quantifying variability and long-term changes in water vapor, and can be used for assessing the relative impact of changes in upper tropospheric and stratospheric humidity. In this presentation, we describe the process of merging the various data sets, which are gridded into a monthly mean product using both geographic and FP-based equivalent latitude in the horizontal, and pressure and isentropic levels in the vertical. Coincident data taken during overlap periods in the satellite record are used to construct bias corrections for each instrument that can be allowed to vary in both the horizontal and vertical. Detailed comparisons are presented between the satellite retrievals, climatology, and balloon-borne frostpoint hygrometer observations, with the goals of assessing the agreement between the satellite and balloon data, and validating the climatology.

Satellite vs. Frostpoint

• NOAA FPH and CFH sondes from multiple locations
• All data averaged to MLS resolution

MLS UTLS correction

• “Oscillations” and “146 spike” occur under anomalously dry conditions
→ Interpolate across levels 277, 215, 146, 121 (using 316, 177, 100)
• For “121 spike”, average levels above/below

Climatology examples

• Monthly-mean cross-sections shown for (8/2004)
• Eq. latitude allows for data filling, and helps in capturing the depth of polar vortex dehydration

Quality Control

• Remove data with
 • Aerosol, cloud contamination
 • Poor retrieval uncertainty
• MLS UTLS adjustment
• Put SAGE, HALOE on MLS pressure grid

Climatology overview

MLS UTLS oscillations

• MLS “oscillations” and “spikes” exist at high latitudes at UTLS levels (~215-121 hPa)
• Plot below shows all MLS points close to one FP sonde from Sodankyla (12/2005)

• Unphysical oscillations show up in monthly mean plots (8/2004)

Future work aimed at
• MLS shows best agreement with FP sondes
• MLS UTLS oscillations problematic, but correctable
• Combined product useful for studying interannual variability.
• Future work aimed at
 • better data filtering (e.g., Pinatubo)
 • more sophisticated filling (multiple regression?)

Satellite vs. Satellite

• Plot shows differences between MLS and SAGE/HALOE after applying MLS UTLS corrections and identifying matches during the overlap period (2004-2005)

Oscillation/spike definitions:
1. 121/215 oscillation: Local minima at 215 hPa + local maxima at 121 hPa
2. 146/215 oscillation: Local minima at 215 hPa + local maxima at 146 hPa
3. 121(146) spike: Local maxima at 121(146) hPa, and no oscillation

Conclusions

Resolution:
• Monthly-mean (1984 – present)
• Zonal-mean (2.5° lat)
• 32 pressure levels (316 - 0.01 hPa)
• 21 isentropic (300-850 K)
• Geographic and equivalent latitude grids

Information stored (lat, level, time):
• Mean, standard deviation, mean uncertainty
• For each satellite (SAGE, HALOE, MLS), both “raw” and corrected versions
• Combined, weighted mean (SAGE+HALOE+MLS)
• Combined, w filling