Offsetting roles that black carbon and sulfate play in climate change

Ilissa Ocko¹ (iocko@princeton.edu), V. Ramaswamy^{1,2}, Paul Ginoux², Larry Horowitz^{1,2}

¹AOS Program, Princeton University, Princeton, NJ

²NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ

1. Background

- Aerosols as a whole are considered to offset the radiative effects of greenhouse gases
- However, there exists a robust offset amongst the main anthropogenic aerosol species themselves

- Black carbon (BC) and sulfate (SO₄) have comparable but offsetting top-of-atmosphere (TOA) direct radiative forcings (DRFs)
- Both species have negative surface forcing from reducing the solar radiation reaching the surface

RESEARCH QUESTION:

How have BC and SO₄ contributed to 20th century climate change?

2. Methods

- NOAA GFDL coupled global climate model CM2. is used to assess changes in key climate variables from preindustrial (1860-1880) to present-day (1980-2000)
- Several forcing scenarios are run for 140 years for an ensemble of initial conditions
- Aerosol distributions are simulated by MOZART 2
 [Horowitz et al., 2003] with IPCC AR4 emissions
 [Horowitz, 2006]
- Horizontal resolution of 2° (latitude) by 2.5° (longitude), with 24 vertical levels
- External mixtures of aerosols are used to calculate radiative forcings

3. Results represent climatic changes from pre-industrial to present-day

	Global-mean	Regionally
Radiative Forcing	TOA DRF offset of -0.09 Wm ⁻² consistent with IPCC AR4	Strongly depends on region and BC/SO₄ ratio (see map below)
Air Temperature	Offset proportional to that of forcing (-0.08 K)	Positive temperature responses in South Pole, overall negative in Arctic
Precipitation	Both responses negative and comparable, half of LLGHG's	Inverted zonal trends but SO₄'s magnitude dominates
Soil Moisture	Reduced hydrological cycle for SO ₄ , less evaporation, wetter soil	Strong inverted trends do not match precip, peaks in NH mid-lats
Ice Volume	SO₄ increases ice volume more than BC reduces it	Both aerosols reduce ice in SH, but have opposing effects in NH

4. Conclusions

- **1.** BC and SO_4 exhibit a radiative offset at the top-of-atmosphere, with a strong regional dependence and near-complete balance for the global-mean
- 2. BC and SO₄ DRFs cause opposing global-mean climate responses in air temperature, soil moisture, and ice volume, and similar responses in precipitation rates
- 3. Zonally, BC and SO₄ induce opposite results in all 4 climate variables, and zonal patterns are inverted
- **4.** Overall, SO₄'s climate responses slightly dominate that of BC's, and thus aerosols as a whole slightly offset climate changes due to long-lived greenhouse gases

Acknowledgements

Ilissa B. Ocko is supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 0646086 and by the Cooperative Institute for Climate Science.

