Regional Arctic Climate System Model: Overview

Wieslaw Maslowski - Naval Postgraduate School
Andrew Roberts, Jaclyn Kinney  
John Cassano, Matthew Higgins  
William Gutowski, Justin Glisan, Brandon Fisel  
Dennis Lemtenmaier, Chunmei Zhu  
William Lipscomb  
Slawek Tulaczyk  
Xubin Zeng  
Anthony Craig  
Jaromir Jakacki, Robert Osinski

Naval Postgraduate School  
University of Colorado  
Iowa State University  
University of Washington  
Los Alamos Nat. Lab  
Univ. California/Santa Cruz  
University of Arizona  
NCAR  
Institute of Oceanology, Polish Acad. of Sciences

MOTIVATION

✧ Large errors in global climate system model simulations of the Arctic climate system
✧ Missing air-sea-ice feedbacks in regional stand-alone models
✧ Observed rapid changes in Arctic climate system:
  • Sea ice
  • Greenland ice sheet
  • Temperature
✧ Arctic change has global consequences for
  • Thermohaline circulation
  • Global energy balance

DEVELOPMENT GOALS

1. Facilitate focused regional studies of the Arctic climate
2. Resolve critical details of land elevation, coastline and ocean bottom bathymetry
3. Improve representation of local physical processes & feedbacks (e.g. forcing & deformation of sea ice)
4. Minimize uncertainties and improve projections of pan-Arctic climate change
5. Develop state-of-the-art Regional Arctic Climate System Model (RASM) including high-resolution atmosphere, ocean, sea ice, and land hydrology, ice sheet and dynamic vegetation components
Regional Arctic Climate System Model: Structure & Selected Results

**DOMAINS**
Region includes:
+ All ice-covered ocean in the Northern Hemisphere
+ All Arctic river basins
+ Critical inter-ocean exchange and transport
+ Large-scale atmospheric weather processes

WRF and VIC model domains include the entire colored region.
POP and CICE domains are bounded by the inner blue rectangle. Shading indicates model topobathymetry.
The Arctic System domain (red line) is defined in Roberts et al. (2010).

**COMPONENTS**

- Atmosphere - Polar WRF (grid spacing ≤50km)
- Land Hydrology – VIC (same as WRF)
- Ocean - LANL/POP (grid spacing ≤10km)
- Sea Ice - LANL/CICE (same as POP)
- Flux Coupler – NCAR CPL7
- Land Ice – GLIMMER (planned)
- Dynamic Vegetation – CLM4NDV (planned)

NCAR CCSM4 framework used for developing RASM

**SIMULATION**
We have used RASM to simulate 1990-2001, using ERA-Interim boundary conditions.

❄ Fully-coupled RASM produces stable, multi-year climate simulation.
❄ Winter T biases need correction; other seasons (not shown) good.
❄ Planned simulations include multi-decadal future and retrospective cases.
❄ Further implementation will include ice sheets and dynamic vegetation.