Links Between Arctic Amplification and Extreme Weather in Mid-Latitudes
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Figure 1: 500 hPa anomaly fields associated with 4 examples of extreme weather events. From left to right: Heaviest precipitation
events in Chicago, hottest days in Atlanta, snowiest days in Philadelphia, and coldest days in W. Europe. Note that in each case the
500 hPa height field is characterized by a high-amplitude flow that tends to favor persistent weather conditions.
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Figure 6: Time series of 1000-500 hPa thickness differences (left) Figure 7: It’s also apparent that the changes in poleward gradient
between 80-60°N and 50-30°N over N. America and zonal mean are related to the loss of sea ice. This pair of plots shows time

winds at 500 hPa between 40-60N for winter (blue), spring series of 1000-500 hPa thickness gradients in the N. Atlantic and
20— 23 1 —o— North America (green), summer (red), and fall (brown). Data were obtained N. Pacific during years with above- and below-normal sea ice
—o—March 2 ' —— Eurasis from the NCEP/NCAR reanalysis. Since the mid-1980s, the extent. Data extend from September of the extreme ice year to
_ —u—September 15 poleward thickness gradient has decreased markedly, the following March. Thickness gradients are weaker after
T e R T i ~ T N T T E "1 particularly in fall and winter. The zonal wind speed at 500 hPa summers with less ice than normal, and the weakening extends
5 g 097 has followed suit, with a decrease of about 20%. to the following spring. (from Francis et al, 2009)
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Figure 2: The loss of sea ice (left) has been dramatic in recent decades, particularly during summer (red).
As the ice pack thins owing to increased export of thick ice and surface heating, remaining ice is more
vulnerable to anomalies in wind patterns and surface energy fluxes. Snow cover (right) on high-latitude
land areas has been melting earlier in spring, resulting in earlier warming and drying of soils that
contribute to Arctic Amplification during summer. Sea ice data are from the National Snow and Ice Data
Center, and snow anomalies are from Brown et al, (2010).
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Figure 8: We analyze selected isopleths of the 500 hPa height field over several decades to characterize changes in the 500 hPa pattern over N.
America. Left is an example of a typical isopleth. The plot for autumn shows the annual-mean number of gridpoints with 500 hPa heights at
5600 m +50m located north of 60°N (top) and south of 40°N (center). The bottom plot is the standard deviation of gridpoint latitudes, which
indicates the amplitude of waves in flow. The winter plot is the same but for the 5400 m £50m isopleth, and the summer is for 5700m. The
dotted turguoise line shows the Sept-minimum sea-ice extent. Curves have been smoothed with a 10-year moving boxcar filter.
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Increased ice loss during summer exposes
additional open water to the cold autumn
atmosphere, delaying freeze-up. A

tremendous amount of heat and moisture is T 7 . Based on these results for N. America, as well as similar

What does this all mean?
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— released into the air, resulting in'temperature . e oo ——— r analyses for other regions not shown here, we conclude:
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— anomalies that persist into winter and extend | " > Arctic Amplification leads to weaker zonal flow in upper
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—P to upper atmospheric levels. - levels, particularly in fall and winter and also to a higher-
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Total anomaly = -1.9 million sq km

amplitude pattern in all seasons.

» Figure 8 shows that the number of gridpoints with 500 hPa
heights representative of the maximum flow has increased
north of 60°N (top panels), suggesting that the peaks of
ridges have shifted northward, while the number of
points south of 40°N has decreased, suggesting the entire
jet stream has shifted northward. This is consistent with
other studies (e.g., Seidel et al, 2007) suggesting that the
tropics are expanding as a result of global warming.
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Figure 9: Hovemoller diagrams show longitudinal variations with

o time of the number of gridpoints with 500 hPa heights of 5700m . crss

=i =" T 8TieP . cl6 » Ridges are shifting northward faster, howeuver, as

: north of 60°N during summer (left) and with heights of 5400m o , , o ,

E south of 40°N during winter over N. America indicated by increasing standard deviations (Fig. 8, lower
E 3 Jan to Mar: 2000 to 2010 Apr to Jun: 2000 to 2010 Oct to Dec: 2000 to 2010 pa ne|S) and aS i”ustrated in SChematiC to Ieft.
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'g' : =yt i e s e B emacmea e s = iipelle > Waves in 500 hPa hei ghts have elongated and the flow

has amplified, favoring more persistent weather
conditions

» Weaker zonal flow further enhances wave amplitude, just
as a river flowing down a steep slope tends to flow
straighter than one on a flat coastal plain (photos left).

» Hovemoller diagrams suggest that ridges have
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Figure 3: Surface air temperature anomalies by

latitude band, offset by 1°C (figure by P. Hogarth Figure 4: Anomalies in air tem!oerature (C) at 1000 hPa (top row) and 1000-500 hPa strengthened over western N. America during summer
based on CRUTEM3 and HadSST2 data). The thlc.knesses (m) (bottom row) in each season (columns): JFM, AMJ, JAS, and OND (Fig. 9, left), resulting in drier and hotter conditions, while
existence of ice and snow in the Arctic enhances during 2000-2010. Data are from the NCEP/NCAR Reanalysis, http://www.esrl.noaa. i ) ) ) ]

its sensitivity to forcing anomalies. Note that gov/psd/. Note large positive anomalies in surface temperatures, especially during fall Arctic amplification eldn’g_atgsh troughs during Wmter. (Fig. 9, right) have shifted .
Arctic temperatures (bottom curve) exhibit and winter in close proximity to the ice pack, with evidence of effects of earlier snow ridges, increasing wave amplitude eastward, weakened in the west, and strengthened in the
larger fluctuations, as well as larger positive melt during summer. Corresponding positive anomalies in 1000-500 hPa thickness are east, contributing to colder, snowier East-Coast winters.
trends since mid-century . more widespread but largest in high latitudes.

extent, 1967-2008. J. Geophys. Res., doi: 10.1029/2010JD013975.
mer Arctic sea ice extent, Geophys. Res. Lett., 36, LO7503.
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