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cover have decreased over the past several
decades (Serreze et al. 2007, Déry and
Brown, 2007) and these trends are
projected to continue by climate models
(Singarayer et al 2006; Seierstad and Bader
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Bimonthly distributions of Arctic sea ice concentration

2009) as a result of global warming. For (%) during 1980-99 and 2080-99 from CCSM3.
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example, CCSM3/ NCAR S Coupled Cllmate Sea Ice Forcing and Surface Flux response S
model indicates that sea ice will disappear A Y VY AV AV e E
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during summer by the end of 215t century.
However, snow and ice do not simply
respond to the anthropogenic forcing but
feedback on the climate system influencing
the overall atmospheric response. This
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The geopotential height response (Az). The contour
interval is 5 m with positive (negative) values in red
(blue), and the zero contour is omitted. Stippling
indicates values that exceed the 95% confidence
interval; color shading denotes ASC (%).

Bi-monthly  response of net surface energy flux
(AQnet; Wm™), terrestrial air temperature (AAir T;
°C), terrestrial snow depth (ASnow; cm liquid water
equivalent) and terrestrial precipitation (APrecip; mm
day?). Thick black contours on the air temperature

Seasonal distributions of the average terrestrial snow cover

panel§ outline regions with a Iow—Ievc.eI temperature (SC, %) for (first row) 1980-99 and (second row) 2080-99 —
inversion (Tgcgnpa — T1000npa > 0 2C) during 1980-1999.
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sea ice set to 1980-99 mean value. * The loss of Arctic sea ice is greatest in summer and fall, yet the c . |
. . response of the net surface energy budget over the Arctic Ocean is L INNET I INYE AN
Expe rII I Ie nt DESlgn |arge5t in winter. , ) ) ELefé)O:”T)heSASAT (C)O(;/ezbland”)] the (to?):cscrgowé
. . . . . . . . . T NG middle): Sea Ice, an ottom): origina M
1880-1999 values obtained from the * Air temperature and precipitation responses also maximize in winter, e = simulations (see Deser et al. 2010). Al of the ASAT
. . . . 5 AN " LAY <" 1SRN (7 < L | 1.0°C and t val 0.5°C tatisticall
average of the 7-member ensemble both over the Arctic Ocean and over the adjacent high latitude & Gak gk AW i ngﬁﬁfc;t ata:hemg;%valeuveesl.>(Abovaer)(:e Hovmaller
“~yNth ” o - . 05t A . ) WIS W+ diagrams of ASAT averaged over land as a function of
CCSM3 20 Century SlmU|at|0nS. COntlnentS. latitude and calendar month in the (left): Snow,
2080-2099 values obtained from the * Snow depths increase over Siberia and northern Canada due to the | | (middle): Sea Ice, and (right): CCSM3 experiments.
average of the 21st century CCSM3 enhanced winter precipitation and temperatures that remain below
simulations under the A1B greenhouse freezing. References
gd> forcmg scenario. ’ Atmospherlc warming over the hlgh latitude continents is mamly Alexander, M. A., R. Tomas, C. Deser, and D. M. Lawrence, 2010: The Atmospheric Response to Projected
Boundary conditions repeat the same confined to the boundary layer (below ~ 850 hPa) and to regions with Terrestrial Snow Changes in the Late 21st Century J. Climate, 23, 6430-6437.
seasonal cycle in each experiment (no a strong low-level temperature inversion. Déry ,S. J., and R. D. Brown (2007), Recent Northern Hemisphere snow cover extent trends and implications
interannual variability). * Enhanced warm air advection by sub-monthly transient motions is the for the snow-albedo feedback, Geophys. Res. Lett., 34, L22504, doi:10.1029/2007GL031474.
SST and greenhouse gas concentrations set primary mechanism for the terrestrial warming (Deser et al. 2010). Deser, C., R. Thomas, M. Alexander, and D. Lawrence, 2010: The Seasonal Atmospheric Response to
to the 1980-1999 CCSM3 output in all » Significant large-scale atmospheric circulation response is found during ProjectediArciiciseallcelloss InithelLate 215t Century. J. Crimale, 23,333°351
three experiments. winter, with a baroclinic vertical structure over the Arctic in Seierstad, |. A., and J. Bader, 2008: Impact of a projected future Arctic sea ice reduction on extratropical
: : : : : storminess and the NAO, Clim. Dyn. doi10.1007/s00382-008-0463-x.
Response is obtained from the difference November-December and a barotropic response in January-March.
: : S M. C., M. M. Holland d J. St 2007: P ti the Arctic’s shrinki | :
(A) between the 60-year average of the Response resembles the negative phase of the North Atlantic ;Z:f,ie o ’1533_15360 and, an FORVE, SEpEERiiEs TN St Snrinan seerias Eor
Sea ice or Snow (2080-99) with the Oscillation in February only. , | _ , -
, , , , , , Singarayer, J. S., J. L. Bamber and P.J. Valdes, 2006: Twenty-first-Century climate impacts from a declining
control integrations (1980-99). * Comparison with the fully coupled model reveals that Arctic sea ice Arctic sea ice cover. J. Climate, 19, 1109-1125.
Statistical significance of the response loss accounts for most of the high latitude warming response to - -
& , P , 5 & Tesp This research was supported by a grant from the National
evaluated using a two-sided t-test. greenhouse gas forcing at the end of the 21st century.

Science Foundation’s Arctic System Science Program



