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c. The different land models have strong regional impact on the simulated surface warming,
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especially over warm regions, but has little impact on projections of annual global-average
COLA-SSIBY - ' | - ' ' temperature change.
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3. Experiments

a. Long-term simulations
All the simulations start from April 1, 1982 and end on January 1, 2005 (close to 23
years).

b. GLACE-type simulations

Ensemble W 1s a set of free runs with different initial land and atmosphere conditions but
forced by the same SST, and ensemble S is the same as ensemble W except that, at each
time step, the soil moisture in all the soil layers 1s replaced by that from one member
chosen from ensemble W. A diagnostic variable QQ was defined:
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