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Objectives Conclusions

State-wide variations: ENSO 1s the leading driver in DJF, JJA and SON; 1n
MAM, locally driven variations in the late-season monsoon dominate.

Cape York and SE Queensland emerge as regions of coherent rainfall variability.
Cape York summer rainfall 1s associated with tropical-cyclone activity; SE
Queensland rainfall is driven by onshore winds and coastal cyclones.

To 1dentify the large-scale climate drivers of inter-annual and decadal rainfall
variability in Queensland.

To examine the temporal variability in the strengths of these drivers during the
past 100 years.

1. Queensland’s variable rainfall 4. Troplcal cyclones

S Tt MQN - —| DJF EOT 2 (8.6%; Fig. 3a)
, ~ explains the most variance in Cape
RS - York, northern Queensland. The
. ) ~timeseries (Fig. 3b) has little
NN correlation with ENSO.
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Queensland has experienced considerable inter-annual and decadal rainfall
variability since at least the early 1900s (Fig. 1). The inter-annual standard
deviation 1s approximately 25% of the mean, higher than many other tropical
regions (c.f., the Indian monsoon, with a standard deviation 10% of the mean).
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The relationship between eastern Australian rainfall and the El Nino-Southern
Oscillation (ENSQO; e.g., Allan, 1988; Wang and Henson, 2007) 1s well-known, but
ENSO explains only 25% of the variance 1n Queensland rainfall; far less 1s
understood about the drivers of the other 75% of the variance.

— Composites of seasons above

~ (Fig. 3¢) and below (Fig. 3d) one

- | standard deviation show a strong

- association with tropical cyclone
tracks in the Coral Sea. Wet

- summers are associated with
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0 . Figure 1: Wet season greater cyclone activity, supported
o - (November-April) rainfall in - by lower vertical shear (Fig. 3e).
10- Queensland, expressed as a _ .

204 percentage anomaly from the - Figure 3: The (a) spatial pattern and (b)

timeseries of DJF EOT 2. Composites of
- IBTrACS cyclone tracks 1n seasons (c¢) above
and (d) below one standard deviation
(1979-2008 only). (e) Regressions on 20CR
vertical shear (only where significant at 5%).
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long-term (1900-2008) mean.

Data taken from the SILO
interpolated gauge dataset
(section 2).

November-April rainfall (percentage anomaly) over Queensland
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Empirical Orthogonal Teleconnection (EOT) analysis (Van den Dool et al., 2001;
Smith et al., 2004) 1s applied to 1900-2008 seasonal-mean rainfall from the 25 km
SILO interpolated gauge dataset. EOT analysis 1dentifies patterns of variability
based on correlations. The EOT 1 base point has the highest correlation with the
Queensland-average rainfall; the spatial pattern is the correlation of every gridpoint
with the central point. EOT 2 1s computed similarly, after first removing EOT 1
from every point by linear regression. The first three EOTs 1n each season explain
at least 55% of the variance and are analyzed here.
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" 5 | Wet autumns n Queensland are associated
e — A B | . with a locally enhanced monsoon circulation
| and warm SSTs off the east coast (Fig. 4).
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Figure 4: The (a) spatial pattern and (b) timeseries of MAM EQOT 1. Regressions on (¢) 20CR MSLP
and 850 hPa winds and (d) HadISST SSTs. Regressions are shown only where significant at 5%.

Linear regression on 20th Century Reanalysis (20CR; Compo et al., 2011) 6. Onshore winds in the southeast

ensemble-mean fields determines the circulation patterns associated with each EOT.

Rainfall variability in the southeast in DJF (Fig. 5a-d), MAM (not shown) and JJA

ENSO - EOT (F1g. Se-h) 1s associated with blocking and onshore winds. These EOTs show
3. -driven S significant decadal variability, but are not correlated with ENSO or decadal Pacific
. . . . o P R s R SST variability.
The leading, state-wide EOTs 1in DJF (37.7% variance), JJA (45.1%) and SON - « b. - Jc w L - d
(41.3%) are highly correlated with ENSO. In MAM, ENSO affects only tropical | e e 1 e Y e
| northern Queensland and is associated with EOT 3 (8.0%). ER 2 &> ® |
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S [ Figure 5: The (a,e) spatial patterns, (b,f) timeseries, (c¢,g) regressions of 20CR MSLP and 850 hPa winds and
4}7/ ‘o & [ (d,h) wavelet transforms with a Morlet mother wavelet for (a-d) DJF EOT 3 (7%) and (e-h) JJA EOT 2 (14%).
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