Interdecadal change of the South China Sea Summer monsoon onset

By Yoshiyuki Kajikawa¹ and Bin Wang²

¹HyARC, Nagoya Univ. Japan, ²IPRC, University of Hawaii at Manoa, USA

Introduction

- The South China Sea summer monsoon (SCSSM) has abrupt climatological onset.
- Recently the interdecadal change of the SCSSM around 1993/1994 has been discussed (Kwon et al. 2005 & 2007, Wang et al. 2009, Kajikawa et al. 2009)

[Q] this change has seasonal dependency?

Objectives

1. To detect the interdecadal change in the SCSSM evolution, specially its onset and withdrawal
2. To examine the nature and processes of such an interdecadal change
3. To determine the potential factors responsible for the change in the timing of SCSSM onset if any.

Data set

1. Interpolated OLR (Liebmann and Smith 1996)
2. NCEP/NCAR reanalysis (Kalnay et al. 1996)
3. Hadley Center SST (Rayner 2003)
4. IBTrACS: TC track data (Knapp et al. 2010)

✓ A significant advance in the SCSSM onset dates around 1993/1994: May 30th for 1979-1993 and May 14th for 1994-2008. (Fig. 1 and Fig. 2)
✓ The relatively late onset during 1979-1993 is primarily determined by the northward seasonal march of the ITCZ, whereas the advanced onset during 1994-2008 is affected by the enhanced NW-ward moving tropical disturbances from the equatorial western Pacific. (Fig. 3)

Factors responsible for the SCSSM onset variability around 1993/1994

- Abrupt convection enhancement for the monsoon onset
- Thermal condition
- Tropical disturbances as triggers for monsoon onset

Intraseasonal variability

1979-1993

1994-2008

Figure 4: Tropical cyclone tracks, which passed through the SCS and/or the Philippine Sea (10N-20N, 105E-130E) in April 15th - May 15th during (a) 1979-1993 and (b) 1994-2008.

Figure 5: The epochal difference in the OLR anomalies on (a) 10-25-day and (b) 30-80-day time scale during April 15th - May 15th (1994-2008 minus 1979-1993). The contours indicate climatological ISV during 1979-1993. Dots indicate area where the difference is 95% significant.

Figure 6: The tropical cyclone Genesis Potential Index (GPI) in May during (a) 1979-1993 and (b) 1994-2008. (c) The difference: 1994-2008 minus 1979-1993.

Figure 7: Epochal mean SST difference in May (1994-2008 minus 1979-1993; Shading) and the climatology during 1979-1993 (contour). Dots are plotted over the area with 95% significance.

Summary

1. The advanced onset during 1994-2008 is affected by the enhanced activity of northwestward moving tropical disturbances.
2. During 1994-2008, the ISV over the WP is enhanced in April and May; further the number of TC, passed through the SCS/PS, is about doubled compared with during 1979-1993.
3. These enhanced ISV and TC activity are attributed to a significant increase in SST over the WP. Thus, the advanced SCSSM onset is rooted in the decadal change of the SST over the equatorial WP.

Acknowledgement

This work is supported by the Global Environment Research Fund of the Ministry of the Environment, Japan (A0902).

References


Yoshiyuki Kajikawa: ykaji@hyarc.nagoya-u.ac.jp


We found a significant change in the SCSSM onset around 1993/1994

1. The advanced onset during 1994-2008 is affected by the enhanced activity of northwestward moving tropical disturbances.
2. During 1994-2008, the ISV over the WP is enhanced in April and May; further the number of TC, passed through the SCS/PS, is about doubled compared with during 1979-1993.
3. These enhanced ISV and TC activity are attributed to a significant increase in SST over the WP. Thus, the advanced SCSSM onset is rooted in the decadal change of the SST over the equatorial WP.