

Developments in Radiative Forcing Piers Forster, Tim Andrews (now at Met Office), Julia Crook

Thanks to: Jonathan Gregory (Univ. Reading,UK Met Office), Karl Taylor (PCMDI) Olivier Boucher (when he was Met Office) Tami Bond (Illinois)

Radiative forcing - duel role

1. Climate Policy Role (Global Warming Potential)

2. Climate Model Diagnostic

Radiative forcing of climate between 1750 and 2005

IPCC AR4

TAR and AR4 had difficulty with 2. as climate models did not have offline versions of their radiation codes, lacked ability to calculate stratospheric adjustment, and were developing interactive aerosol schemes

-> Good science in RF chapters isolated from rest of report

Radiation scheme intercomparisons CO2 forcing

UNIVERSITY OF LE

up to 25% LW error, 100% SW error

Collins et al., JGR, 2006

Radiation scheme intercomparisons CO2 forcing

Collins et al., JGR, 2006

Forster et al., JGR, 2011

UNIVERSITY OF L

Show how forcing diagnostics can be obtained with little fuss from climate models and why they are a very useful diagnostic

Outline of talk

- 1. Terminology and definitions
- 2. How new definitions of forcing helps us understand climate response
 - a. feedback processes
 - b. global hydrological cycle changes
- 3. How forcing helps us test climate models
 - a. tropical warming
 - b.CMIP5 model response
 - c. aerosol effects
- 4. Conclusions

Looking at how the atmosphere rapidly adjusts when a forcing is applied tells you a lot about its ultimate response.

Caution: Climate models seem to be getting similar responses for different reasons

Terminology

Stratosphericadjusted RF

Terminology

Terminology

Temperature Change

Wednesday, 26 October 11

Emission

Wednesday, 26 October 11

Emission

Terminology

Emission

Terminology

Emission

Terminology

Direct Effect	Radiative forcing
Liquid cloud effect	Radiative forcing
Mixed phase cloud effect	Adjusted forcing
Ice cloud effect	Adjusted forcing
Semi direct effect	Rapid adjustment
Snowpack effect	Effective adjusted forcing
Sea-ice effect	Effective radiative forcing
total climate forcing	Effective BC climate forcing

Bond et al., 201X! Be careful to include everything and not to double count

Efficacy of adjusted forcing

Feedbacks diagnosed for and absorbing aerosol perturbation in HadSM3 Crook, et al., J Climate 2011

Fast response of global precipitation scales with atmospheric forcing

Andrews et al., 2010, Geophys. Res. Lett

Circulation changes

Wyant et al. (2011) use a superparameterized climate model, SP-CAM (2D cloud resolving model in each grid column), with 4 x CO_2 and fixed-SSTs over the tropics to investigate tropical cloud adjustment

Figure 1: Annual mean change in surface temperature for SP-CAM due to 4xCO2.

Deep convection enhanced over land

Land surface warms

∆CO2 increases surface downward LW everywhere

Courtesy of C. Bretherton

Find that land surface warming leads to more convection, cloud and precipitation, with the opposite happening over the oceans (which dominates global-mean change)

Rapid land warming: How fast is fast?

Dong et al. (2008) used 6 member $4xCO_2$ fixed-SST HadSM3 ensemble with daily diagnostics to look at timescale of adjustments:

Ties is nicely with process-based understanding

Quantifying cloud adjustment terms

Rapid adjustment terms for 2xCO2 (CO2 semi direct effect)

	Clear-Sky LW (FLN)	Clear-Sky SW (F _{SN})	Cloud LW (FLC)	Cloud SW (F_{SC})	Net (F)
CCSM3.0	-0.28 ± 0.15	0.02 ± 0.28	-0.39 ± 0.12	-0.13 ± 0.14	-0.78 ± 0.34
CGCM3.1(T47)	0.45 ± 0.23	-0.17 ± 0.33	-0.16 ± 0.14	0.86 ± 0.19	0.98 ± 0.54
CGCM3.1(T63)	0.46 ± 0.23	0.02 ± 0.25	-0.22 ± 0.16	1.04 ± 0.43	1.30 ± 0.66
GISS-ER	_	_	_	-	0.01 ± 0.42
MIROC3.2(medres)	-0.57 ± 0.27	0.13 ± 0.24	-0.11 ± 0.09	1.02 ± 0.41	0.47 ± 0.69
MRI-CGCM2.3.2	-0.15 ± 0.36	-0.42 ± 0.25	-0.26 ± 0.17	0.54 ± 0.32	-0.29 ± 0.55
UKMO-HadGEM1	-0.62 ± 0.34	-0.39 ± 0.32	-0.24 ± 0.19	0.57 ± 0.30	-0.67 ± 0.69
Ensemble	-0.12 ± 0.48	-0.14 ± 0.23	-0.23 ± 0.10	0.65 ± 0.44	0.15 ± 0.80
Andrews and Forst	er (2008)				
	ci (2008)				

Strong positive SW CRE suggestive of a reduction in low-level cloudiness

Net cloud adjustment is generally positive, enhancing radiative forcing and hence climate sensitivity

Cloud adjustment vs cloud feedback

Which method to use?

	Pros	Cons
Gregory Method (regression) F=N+YΔT	Can be used with slabGCMs or AOGCMs	uncertain intercept for small forcing terms, are first time-steps linear?
Shine Method (fixed surface T everywhere)	Efficacies closer to one than fixed SSTs?	disrupts land DTR hard to engineer
Hansen Method fixed SST)-λT	Preserves zero temperature change	need to know climate sensitivity for land T changes
Hansen Method (fixed SST)	Straightforward method	Some global T response has already happened

1	Radiative Flux Perturbation	Semi direct effects
2	Adjusted Forcing	Rapid adjustments
3	lt's a climate feedback, fool!	Fast feedbacks?

UNIVERSITY OF LEEDS

- •Tropical warming
- •CMIP5 model response
- Aerosol effects

Tropical warming in models

Regression splits response to forcing, feedback and heat transport

Crook et al., 2011, J. Geophys. Res.

Forcing from CMIP5 models

The assumed-efficacy-forcing or the slackers forcing

During transient change, radiative response is proportional to ΔT :

 $N = F - Y \Delta T$

Method follows Forster and Taylor, 2006 J Climate

Y from 4xCO2 Experiments (Tim Andrews)

slackers forcing seems to work

CMIP5 forcing components

solid lines- LW clear-sky

dotted lines - SW clear sky (aerosol/surface albedo)

dashed lines - NET cloud radiative forcing

Warning very preliminary analysis!

Inverse forcing estimates

Aerosol indirect developments

UNIVERSITY OF LEE

Conclusions

Looking at how the atmosphere rapidly adjusts when a forcing is applied tells you a lot about its ultimate response

Rapid adjustments

- significantly influence radiative forcing
- contribute to spread in response between models
- * affect diagnosis of model feedbacks and hydrological responses

*Forcing diagnostics provide a much needed test of climate model behaviour

Caution: in some instances, climate models seem to be getting similar responses for different reasons, creates large divergence in future.

*****RE climate policy, doesn't matter what forcing framework you use provided all forcing types accounted for without double counting