Session B7 WCRP 2011

Scale Dependency of the 20th Century Experiments by CMIP5 and CMIP3 Models: Do Reliable Scales Become Smaller?

Koichi Sakaguchi, Xubin Zeng and Michael Brunke Department of Atmospheric Sciences The University of Arizona

ksa@email.arizona.edu

Questions

"How well are the coupled global climate models in predicting the surface air temperature **trend varying over space and time**?"

"How do their performance (errors) change with temporal and spatial scales?"

"How much progress have we made from CMIP3 to CMIP5?"

Method & Data

Variable: temperature trends calculated over:

- moving time windows (e.g., 1880-1889, 1881-1890, 1882-1891,...)
- 5 different temporal scales (10, 20, 30, 40, and 50 years)
- 8 different spatial scales (5°x5°, 10°x10°, 15°x15°, global mean)

Observation: HadCRUT3 (Brohan et al., 2006) and NOAA NCDC (Smith et al., 2008) surface air temperature anomaly

Climate models:	CMIP3	CMIP5
	CCCMA CGCM3.1 T47 (5)	CCCMA CanESM2 (5)
	GFDL CM2.0 (3)	CSIRO Mk3.6.0 (5 out of 10)
	GISS E-H (5)	GISS E2-H (5)
	MIUB ECHO-G(5)	IPSL CM5a-LR (4)
	MPI ECHAM5 (4)	MOHC HadGEM2-ES(4)
	MRI CGCM2.3.2 (5)	MRI CGCM3 (5)
	NCAR CCSM3.0 (5)	NCC NorESM1-M (3)
	20c3m: 32 ensemble members	historical: 31 ensemble members

Results: example

Global mean, 10-year trend time series 1 Black: Obs (solid:HadCRUT3, dashed: NCDC) 0.8 Red: CMIP5 Ensemble mean 0.6 (C° / decade) -0.4 -0.6 -0.8 1880 1900 1920 1940 1960 1980 2000 Center year of each window

Time series of probability for positive trend

Rank Histogram

	CMIP5	CMIP3
correlation	0.43	0.32
RMSE(°C/decade)	0.18	0.17
Brier Score	0.20	0.20
χ^2 for uniformity	43.0	42.7

Results: Linear Correlation

Boxes: 25th-75th range **Lines**: Median

- CMIP5 generally shows better r with the observed trends than CMIP3.

- r > 0.7 ($r^2 \approx 0.5$) is reached more often by CMIP5 simulations at 40 or longer years, over hemispherical and global averages

- CMIP5 also has smaller inter-member differences in r.

Results: RMSE / s_{Obs}

Boxes: 25th-75th range **Lines**: Median

- Similar performance by CMIP3 and CMIP5
- Ensemble mean has RMSE smaller than the observed variability at 30° zonal mean or larger scales

Results: Brier Score

Boxes: 25th-75th range **Thick Lines**: Median

- Improvement with longer temporal scales
- CMIP5 shows better score for 30-year or longer scales

Results: Rank Histogram

- Ensemble consistency is not necessarily improved with longer temporal scales?

9 Results: Ensemble mean bias (bias_{mean}/s_{obs}), CMIP5

30-year 10-year 50-year 5°x5° 15°x15° 30°x30° Gray: not enough 30° data zonal mean

2 1.8 1.6

1.4 1.2 1 0.8 0.6 0.4

0.2 Δ

The ensemble-mean bias of trend becomes larger (relative to Sobs) with longer temporal scales

Summary

Summary

ksa@email.arizona.edu

- Based on the simulated and observed running trends time series, we found

Linear Correlation (r): CMIP5 generally shows better r with the observed trends than CMIP3. CMIP5 also has smaller inter-member differences in r. CMIP5 MME mean reach reasonable correlation (≈ 0.7 , i.e., $r^2 \approx 0.5$) at hemispherical and global mean scales for 30-years or longer temporal scales.

RMSE: similar between CMIP3 and CMIP5 MME means. The error becomes smaller than observed variability at 30° zonal means or larger spatial scales.

Brier Score: CMIP3 & CMIP5 probabilistic predictions for 'positive' trend are usually better than coin-toss (50% each) at 30° zonal mean or larger spatial scales. CMIP5 ensemble better than CMIP3 over smaller (≤ 30°) spatial scales for 30-year or longer trends

Rank Histogram: Possible mean bias for both ensembles, particularly with longer temporal scales.

- Systematic scale-dependent performance summary is more desirable under the increasing interests in regional and decadal predictions.