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Motivation: Can we trust CMIP5 decadal predictions?
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Motivation: Reduce the source of uncertainty in decadal
pI'EdiCtionS Global, decadal mean surface air temperature
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10-20 yr predictions: model errors and internal variability are the largest source of

uncertainty.
Challenge for initialized predictions: models go toward their own mean state, which is

often far from observations

Need to improve models and understand the mechanisms of variability.

We look here at two CMIP5 coupled models: GFDL CM2.1 and NCAR CCSM4



Objective: understand the large uncertainty
in the simulated ocean heat transport (MHT)
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CM2.1 and CCSMA4 like many coupled models u|§1derestimate the MHT at 26N

Msadek R.,W. Johns, S.Yéager, G. Danabasoglu, T. Rosati, T. Delworth, in prep



Models and data

® Two coupled models with comparable resolution ™ I° ocean X 2° atmosphere

GFDL CM2.1 (Delworth et al. 2006, Gnanadesikan et al. 2006)
model used for CMIP5 decadal prediction experiments

NCAR CCSM4: (Gent et al. 2010, Danabasoglu et al. 201 1)
IPCC AR5 model

The ocean model includes a new parameterization of Nordic Seas overflows
(Danabasoglu et al. 2010)

® RAPID-MOCHA observations (Cunningham et al. 2007, Kanzow et al. 2007)

First 3.5 years of MHT and MOC data (Johns et al. 201 1)

==lp Understand the link between MOC and MHT at 26N



Do models underestimate the MHT because of a too small MOC? No
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overflows

Both models have a stronger than observed MOC maximum
If the MOC dominates the MHT, it should be stronger than observed, not weaker



MHT (PW)

Sensitivity of the MHT to a change in the MOC at 26N
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Linear relationship between MHT and MOC at 26N reproduced in both models

Some variability according to forcing (preindustrial, present-day, historical)
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Sensitivity of the MHT to a change in the MOC at 26N

CM2.1 overturning and gyre transport CCSM4 overturning and gyre transport
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The overturning component dominates the link between MOC/MHT in the models
as in RAPID

Slope for the overturning component comparable to observations in CCSM4,
slightly overestimated in CM2.1

Small contribution of the gyre component but wrong sign in both models,
decreasing the slope of the total transport



Are we getting the right overturning heat transport for the right reasons?

Potential temperature distribution at 26 N
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Are we getting the right overturning heat transport for the right reasons?
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Compensation of errors contribute to the right overturning MHT in both models
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Why is the gyre MHT negatlve"

mperature anomalies

relative to the zonal mean
26N section
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Cumulative vertical integral of VT
Total Overturning Gyre
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Errors in total MHT come from both overturning and gyre components

The overturning heat transport is underestimated mainly below 2000m with a larger bias
in CM2.1

The amplitude of the gyre heat transport is negatively biased with errors developing at
500-800m




Some hope that MHT at 26N will get better with resolution

Mean potential temperature at 26N in different GFDL coupled models
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Some hope that MHT at 26N will get better with resolution

Mean potential temperature at 26N
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Depth (m)

Some hope that MHT at 26N will get better with resolution
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Some hope that MHT at 26N will get better with resolution

hMean zonal wind stress Quickscat 2004-2009
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Conclusion

-GFDL CM2.1 and NCAR CCSM4 underestimate the total MHT at 26N compared
with RAPID observations

-Both models reproduce the MOC/MHT linear relationship but with a smaller
slope than observed in CCSM4 and a right slope for the wrong reasons in CM2.1

-The overturning component dominates the MHT in the models consistent with
observations. The realistic overturning MHT in the models is partly due to
compensation of errors.

-The contribution of the gyre circulation to the total MHT is small but positive
in observations. It is negatively biased in both models reducing the total MHT

-Biases at the western boundary (Florida current) are the main source of errors.

-CCSM4 has a better representation of the NADW and thus of MOC and
associated MHT because of the overflow parameterization (parameterization
added in future GFDL model)

-Model biases are largely reduced when increasing resolution, suggesting that the
problem could be addressed with more hope of success in the future

-RAPID is very useful to improve models and better understand the MOC. Need
to maintain the array beyond 2014 to assess not only the mean state but the

variability beyond the seasonal cycle
Msadek R.,W. Johns, S.Yeager, G. Danabasoglu, T. Rosati, T. Delworth, in prep



