EVALUATION OF MULTIDECADAL VARIAIBLITY IN CMIP5 SURFACE SOLAR RADIATION AND INFERRED AEROSOL EMISSION HISTORY

ROBERT J. ALLEN (UC RIVERSIDE) JOEL NORRIS (SIO/UCSD)

WCRP Open Science Conference October 26, 2011

MOTIVATION

- Observations indicate decreases in surface solar radiation (SSR) from ~1950s-1980s ("global dimming"), followed by an increase during the 1990s ("global brightening").
- Anthropogenic aerosol emissions are most likely responsible, esp. for Europe and East Asia (e.g., Wild, 2009 and references therein).
 - Direct aerosol effects, as opposed to indirect effects, appear to be most important (Norris and Wild, 2007, 2009; Ruckstuhl+, 2010).
- Models that exhibit the observed magnitude & timing of dimming/brightening likely have more realistic aerosol radiative forcing (RF).

PRIOR WORK: CMIP3

- Only ~50% of CMIP3 models reproduce the observed SSR decadal variations in a qualitative way.
- Nearly all models underestimate the magnitude.
- Attributed to incorrect aerosol emission inventories.

Dwyer+, 2010

Similar CMIP3 Underestimation For Europe & India

Do CMIP5 models yield improved dimming/brightening trends?

14 CMIP5 MODELS*

1.	BCC-CSM1.1	Beijing Climate Center	3 runs
2.	CanESM2	Canadian Centre for Climate Modeling and Analysis	5 runs
3.	CNRM-CM5	Centre National de Recherches Meteorologiques	1 run
4.	CSIRO-Mk3.6	Commonwealth Scientific & Industrial Research Org.	10 runs
5.	GISS-E2-H	NASA Goddard Institute for Space Studies	5 runs
6.	GISS-E2-R	NASA Goddard Institute for Space Studies	5 runs
7.	HadCM3	Met Office Hadley Centre	4 runs
8.	HadGEM2-CC	Met Office Hadley Centre	1 run
9.	HadGEM2-ES	Met Office Hadley Centre	4 runs
10.	INM-CM4	Institute for Numerical Mathematics	1 run
11.	IPSL-CM5A-LR	Institut Pierre-Simon Laplace	4 runs
12.	MIROC4H	Atmosphere & Ocean Research Institute	3 runs
13.	MRI-CGCM3	Meteorological Research Institute	5 runs
14.	NorESM1-M	Norwegian Climate Centre	3 runs

* All available model-runs (54 total) with necessary variables as of early October, 2011

OBSERVATIONAL DATA

- Global Energy Balance Archive (GEBA) (Gilgen+Ohmura, 1999).
 - Monthly mean global (direct+diffuse) downward solar radiation.
- International Satellite Cloud Climatology Project (ISCCP) Flux Data (Zhang et al., 2004).
 - Monthly mean surface daytime all-sky and clear sky shortwave radiation.
- ISCCP monthly mean daytime total cloud cover (Rossow et al., 1996; Rossow and Schiffer, 1999).
- NDP026-D and NDP-039 monthly mean surface daytime total cloud cover (Hahn and Warren, 2003; Shiyan+, 1997).

METHODOLOGY

• Estimate surface radiative impact of cloud cover anomalies:

 $CCRE'(x, yr, mn) = CC'(x, yr, mn) \times \frac{\overline{SW}_{all}(x, mn) - \overline{SW}_{clr}(x, mn)}{\overline{CC}(x, mn)}$

- Remove from global radiation anomalies via linear regression (Norris and Wild, 2007).
- Resulting "Residual Anomalies":
 - 1. Exhibit more distinct dimming/brightening trends.
 - 2. Enables aerosol contribution to be better identified.
 - 3. Allows a more accurate observation-model comparison.

Study Area

CMIP5 SO2 & BC Historical Emission Inventories

EUROPEAN RESIDUAL FLUX ANOMALIES

EAST ASIA RESIDUAL FLUX ANOMALIES

EUROPEAN RESIDUAL FLUX TRENDS

 -8.6 ± 1.0 vs. -1.5 ± 0.2 $Wm^{-2}decade^{-1}$

JAPAN RESIDUAL FLUX TRENDS

All-Sky SW Trends

CONCLUSIONS

- CMIP5 models qualitatively reproduce observed dimming and brightening trends in Europe, China, and Japan.
- Magnitude of trends, however, is underestimated by models, particularly for:
 - 1961-89 Dimming in China \rightarrow -8.6 ± 1.0 vs. -1.5 ± 0.2
 - 1971-83 Dimming in Europe \rightarrow -3.3±1.5 vs. -0.5±1.1
 - 1990-02 Brightening in Japan \rightarrow +5.5 ± 2.1 vs. +0.4 ± 0.7
- The uniformity of the above underestimation suggests:
 - 1. Deficient aerosol emission histories (temporal variation or mixture of absorbing/scattering).
 - 2. Deficient model aerosol processing/transport.
- Identical aerosol emissions in CMIP5 does not lead to identical dimming/ brightening trends; however, CMIP5 residual flux trends are more uniform relative to CMIP3.

Thank-you