

The SEP Coupled System

Radiative impact of cloud droplet concentration variations

George and Wood, Atmos. Chem. Phys., 2010

VOCALS Goals

- Elimination of CGCM systematic errors in the Southeastern Pacific, and improved model simulations of the coupled system in the region and global impacts of its variability.
- Improved understanding and regional/global model representation of aerosol indirect effects over the region.

Here, focus is on clouds and cloud-aerosol interactions

20°S Cross Section (sampled with ships, planes, buoy, satellites)

Offshore

Coast

NOAA VOCALS Cruises

- 2000-2008 during Sept-Dec
- repeated sampling of Sc deck

de Szoeke et al. (2011)

Aerosol-cloud interactions

Clouds, MBL structure, and aerosols along 20°S

Precipitation and pockets of open cells

Strikingly different precipitation structure in POCs compared with overcast stratocumulus

Sandra Yuter, NCSU

(c) Overcast, outside POC [Oct 28 10:28 UTC] (b) [Oct 27 10:28 UTC] 60 km 25

Radar reflectivity [dBZ]

C-band radar imagery from the Ronald H Brown

Inside POC

Precipitation generates cold outflows and local convergence that maintains open cell structure

Feingold et al., Nature, 2010

POCKET of OPEN CELLS

CLOSED-CELL STRATOCUMULUS

New conceptual models of macrophysical-microphysical interaction across POC boundary

Wood et al. ACP, 2010

Berner and Bretherton (2011, ACPD), and Bretherton et al. (2010, JAMES) Wang and Feingold (2009), Wang et al. (2010)

Precipitation susceptibility

 Construct from Feingold and Siebert (2009) used to examine aerosol influences on precipitation VOCALS-REx data

$$S = -(dlnR_{CB}/dlnN_a)_{LWP,h}$$

- S decreases strongly with cloud thickness
- Consistent with increasing importance of accretion in thicker clouds
- Consistent with results from A-Train (Kubar et al. 2009, Wood et al. 2009)

Optically thin cell centers Optically thin cell centers Optically thick cell walls

Ubiquitous layer near top of POC MBL almost completely devoid of

CCN

 Driven by coalescence scavenging by efficient precipitation production

See Wood et al. (2010, ACP) also Petters et al, (2006)

Ultra-clean layers

Stratocumuli can create new particles

- WRF-Chem run in LES mode
- New particle formation rate comparable with sources from FT and sea-salt
- Not yet understood how important regionally

VOCALS Regional Experiment Impact

- Comprehensive, organized, and accessible field datasets from 5 aircraft and 2 ships for the Southeastern Pacific
 - unprecedented data on clouds, aerosols, and marine boundary layer structure; unique sampling strategies
- Strong synergies between field observations and process/ regional/global modeling studies
- Precipitation more prevalent than previously thought
- Aerosols now seen to be far more 'interactive' with stratocumulus than previously imagined
- Demonstration that international community efforts, based on sound scientific hypotheses, can be successful.

VOCALS Poster Cluster (Monday 6pm)

- Katherine Benedict, Taehyoung Lee, Jeffrey L Collett, Jr. Cloud water composition over the southeastern Pacific (M59A)
- Simon de Szoeke, Christopher W Fairall

 VOCALS/Southeast Pacific science confronts coupled models with ship observations (M60A)
- Jan Kazil, Graham Feingold Sub-grid scale processes of the marine boundary layer cloud-aerosol system (M56B)
- David Leon, Jefferson Snider, Paquita Zuidema, Jayson Stemmler, Gökhan Sever

 The WCR-WCL-GVR Integrated Dataset. Expanding our observational capabilities through a combination of airborne radar, lidar, microwave radiometer, and in situ observations (M55A)
- David Mechem, Sandra E Yuter, Simon P de Szoeke, Casey D Burleyson
 Factorial analysis of mechanisms governing the diurnal cycle in southeast Pacific stratocumulus (M57A)
- Brian Medeiros Southeast Pacific stratocumulus in two versions of the community atmosphere model (M60B)
- Jayson Stemmler, David C Leon, Jefferson R Snider, Gökhan Sever Role of drizzle and mesoscale organization in determining cloud characteristics (M56A)
- Aneesh Subramanian, Arthur J Miller, Bruce D Cornuelle
 Understanding ocean processes during VOCALS-Rex cruise in the South East Pacific in a data assimilation framework (M55B)
- Christopher Terai, Robert Wood, David Leon
 Does precipitation susceptibility change with increasing cloud thickness in marine stratocumulus? (M58A)
- Thomas Toniazzo, Steven J Abel, Robert Wood, Carlos R Mechoso, Leonard C Shaffrey Large-scale and synoptic meteorology of the VOCALS-REx observations campaign (M41A)
- Cynthia Twohy, James Anderson, Darin Toohey, Miroslaw Andrejczuk, AnnaRose Adams, Megan Lytle, Paquita Zuidema, David Leon, Rhea George, Robert Wood <u>Impacts of particles on properties of stratocumulus clouds</u> (M57B)
- Feiqin Xie, Dong L Wu, Chi O Ao, Anthony J Mannucci, Robert E Kursinski
 <u>Cloudy atmospheric boundary layer observations over subtropical eastern oceans from COSMIC GPS occultation</u>
 (M59B)
- Takanobu Yamaguchi, Alan Brewer, Graham Feingold <u>VOCALS/Southeast Pacific Science: Evaluation of WRF-LES with ship borne data during VOCALS-REx</u> (M58B)

Shade: Regression of Local Cloud Feedback to Global-mean Cloud Feedback (W·m⁻²·K⁻¹) Contour: Background 500hPa Pressure Velocity (Pa·s⁻¹)