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What processes explain the evolution of the concentration?

How does convection influence the particle distribution in the atmosphere?

Provide diagnostics for atmospheric processes parameterized
assessment



Transport of tracer

(atq)lafge scale T (atQ)conv + (atq)PBL T (atq)deposition =5



Transport of tracer

Deep convection Deposition terms

/

Wet scavenging, dry scavenging, radioactive decay

* Radionuclide "Be —neutral tracer \

e Half-life 53days Emanuel mass-flux scheme

e Source mainly in upper tropo lower strato



Parameterization of convective scavenging
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Parameterization of convective scavenging
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Parameterization of convective scavenging

Convective saturated updraft
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Parameterization of convective scavenging

Convective saturated updraft
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Parameterization of convective scavenging
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Parameterization of convective scavenging
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Resolving these budget equations
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Experimental simulation: TOGA with "‘Be
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Experimental simulation: TOGA with ‘Be
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Experimental simulation: TOGA with ‘Be
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 Precipitation
* Entrainment
into the cloud
* Entrainment into the
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Experimental simulation: TOGA with ‘Be
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TOGA with 'Be and datas
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e Convective scavenging increases levels of concentration at the surface

e Magnitude closer to the datas



Process-based convective scavenging
Tool for validation of convective scheme parameterization

Help to understand processes in convection

Comparison with CRM
Model-data comparison methodology (GCM)

Paleoclimatology (*Be)
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