The GEWEX Radiative Flux Assessment Project

WCRP Open Science Conference October 24-29, 2011 Paul Stackhouse (NASA LaRC)

Lead Authors (alphabetical): E. Dutton (NOAA ESRL), L. Hinkelman (U.W. - JISAO), S. Kinne (Max Planck Inst.), N. Loeb (NASA LaRC), C. Long (PNNL), G. Kopp (U.Colorado LASP), E. Raschke (Max Planck Inst), P. Stackhouse (LaRC), T. Wong (LaRC) Major Contributors (alphabetical): L. Chambers (LARC), S. Cox (SSAI), S. Freidenreich (GFDL), J. Colleen Mikovitz (SSAI), A. Ohmura (ETH - retired), W. Rossow (CCNY/NOAA CREST), W. Su (SSAI), T. Zhang (SSAI), Y. Zhang (Col. U./GISS) Other Contributors (alphabetical): R. Bantges (), D. Doelling (LaRC), D. Keyes (SSAI), B. Leipert (NWRL), R. Pinker (U. Md.), J. Russell (), H. Tian (U. Md.), N. Hatzianastassiou (U. Ionnia) and the NASA LaRC Atmospheric Science Data Center

GEWEX RFA TOA Radiation Overview

- GEWEX Radiative Flux Assessment (RFA) is a community based activity (first of its kind for TOA and surface radiative flux) commissioned by GEWEX Radiation Panel
- Assess our current understanding and capability to derive TOA radiative fluxes from analysis of satellite observations
 - Several workshops held => most recent in December 2010
 - Data sets developed and submitted to archive
 - Web site developed: <u>http://gewex-rfa.larc.nasa.gov</u>
 - Good working drafts of all chapters now exist
- Identify uncertainties and outstanding issues in flux estimation
 - Sources include satellite calibration, input data sources, spatial and temporal gap filling, and other assumptions
- GEWEX RFA report may be an useful reference for development of future climate system observation requirements for radiative fluxes as well as for understanding current data limitation and uncertainty for future IPCC report
 - GEWEX News Article published

RFA Report Status

Section	Title	Responsible Author(s)	Status
0.0	Executive Summary	Raschke and all	Draft
1.0	Introduction	Raschke and all	Incomplete
2.0	Incoming Solar Irradiance	Kopp and Raschke	V3 Draft; reviews obtained
3.0	Long-Term TOA Flux Data Product Comparisons	Wong, Rossow and Zhang	Draft in revision
4.0	Long-Term Satellite Based Surface Flux Product Comparisons	Stackhouse, Kinne, Rashke, Hinkelman, Y. Zhang	Draft in revision
5.0	Long-Term In-Situ Surface Flux Data Product Comparisons	Dutton, Long, Leipert, Ohmura and Wild	Draft; ready for outside review
6.0	Satellite-Estimate Surface vs. In-Situ Measurement Comparisons	Hinkelman, T. Zhang, Stackhouse, Wild,	Draft in revision
7.0	Vertical Column Flux Divergence	Raschke and Kinne	Draft in revision
8.0	Global Radiation Budget Diagram	Loeb, Su	Draft in revision
9.0	Global Model Comparisons	Kinne, Raschke, Friedenreich, Hinkelman, T. Zhang	Draft in revision
А	Data Sets and Uncertainties	Hinkeman	Draft
В	Radiative Transfer Model Comparisons	Kato	Draft
С	Contributed Papers	Various	4 drafts
D	Lessons Learned	Co-Chairs	TBD

Chapter 3: Satellite TOA Radiation Measurements

Chapter 3: TOA Radiation Datasets

Data Source	Satellite Source	Spatial Coverage	Temporal Coverage				
CERES*	Terra, Aqua	Global	03-2000 to 10-2005				
ISCCP-FD	ISCCP Geo + Polar	Global	07-1983 to 12-2004 3				
LaRC GEWEX SRB	ISCCP Geo + Polar	Global	07-1983 to 06-2005				
FORTH	ISCCP Geo + Polar	Global	01-1984 to 12-2004				
Univ. Md. SW**	ISCCP Geo + Polar	Global	07-1983 to 12-2004				
Univ. Md. HIRS/OLR**	NOAA Polar	Global	01-1979 to 09-2003				
ERBE Scanner	ERBS, N9, N10	Global	02-1985 to 05-1989 1				
ERBE NonScanner	ERBS	60N to 60S	1985 to 1999				
ScaRaB Scanner***	Meteor, Resurs	Global	1994-95, 1998-99				
CERES: SRBAVG-GEO, SRBAVG-nonGEO, ERBE-like, and EBAF;							

•• UM SW, UM HIRS/OLR: single component data;

*** ScaRaB: few months within these two periods From Chapter 3; Contribution by Wong

Chapter 3: TOA Radiation Datasets

From Chapter 3; Contribution by Wong

Chapter 3: TOA Radiation Datasets

From Chapter 3; Contribution by Wong

Chapter 3: Annual Global Mean TOA Radiation Budget

From Chapter 3; Contribution by Hinkeman

Chapter 4: Surface Radiation Datasets

Data Source	Satellite Source	Spatial Coverage	Temporal Coverage
CERES*	Terra, Aqua	Global	03-2000 to 10-2005
ISCCP-FD	ISCCP Geo + Polar	Global	07-1983 to 12-2004
LaRC GEWEX SRB	ISCCP Geo + Polar	Global	07-1983 to 06-2005
FORTH	ISCCP Geo + Polar	Global	01-1984 to 12-2004
Univ. Md. SW**	ISCCP Geo + Polar	Global	07-1983 to 12-2004
DLR ISIS SW only	ISCCP Geo + Polar	Global	07-1983 to 06-2000
Univ. Md. Net SW	ERBS, N9, N10	Global	02-1985 to 05-1989

CERES: SRBAVG-GEO, SRBAVG-nonGEO, ERBE-like, and EBAF;

From Chapter 4: Contribution by Stackhouse, Cox, Mikovitz

Chapter 4: Comparison of Satellite Based Algorithms

LW Downward Fluxes SW Downward Fluxes All-Sky SW Dn GEWEX-SRB All-Sky LW Dn CERES-SRBAVG-Terro-GEO-MOD - GEWEX-SRB All-Sky SW Dn CERES-SRBAVG-Terro-GEO-MOD - GEWEX-SRE All-Sky LW Dr GEWEX-SRB CERES CERES **GEWEX SRB GEWEX SRB** 180 200 220 240 260 280 300 320 340 360 All-Sky SW Dn ISCCP-FD - GEWEX-SRB All-Sky SW Dn GEWEX-SRB QC - GEWEX-SRB All-Sky LW Dn ISCCP-FD - GEWEX-SRB All-Sky LW Dn FORTH - GEWEX-SRB I PLA **ISCCP FD** LPLA **ISCCP FD** All-Sky SW Dn DLR-ISIS - GEWEX-SRB All-Sky SW Dn JMD-SRB - GEWEX-SRB Systematic differences noted and related to surface type and satellite DLR UMd view angle

From Chapter 4: Contribution by Stackhouse, Cox, Mikovitz

Chapter 5: Assessment of Surface Measurements & Uncertainties

Redundant measurements now provide estimates of operational uncertainties for in situ irradiance measurements

Quantity	1-3 min	1 Hr	1 Day	1 month	1 year	Figure #
SW Direct	±16	± 14	± 8	± 5	± 4	5.1.2
SW Diffuse	± 14	±13	± 8	± 5	± 4	5.1.3
SW Global	± 25	± 24	± 11	± 8	± 6	5.1.4a
SW Total	±21	± 19	± 11	± 7	± 6	
LW	± 6			$\pm 4*$		5.1.5

Table 5.1.10.1 The 95% inclusion ranges (W m⁻²) of redundant measurement differences from operational network field sites for all zenith angles including nighttime. The values for the various parameters were obtained from the indicated or similar Figures with SW Total values were computed from square root sum of squares of the SW Direct and SW Diffuse.

* Averaging times vary between one and several weeks.

Chapter 5: Courtesy Ellsworth Dutton, NOAA

Chapter 6: Comparison of Satellite-based vs. In situ Surface Flux Measurements

43 Baseline Surface Radiation Network (BSRN) Sites with Data Starting from 1992

From Chapter 6: Contribution by Hinkelman, T. Zhang & Stackhouse

Chapter 6: Comparison of Satellite-based vs. In situ Surface Flux Measurements

Statistics of GEWEX RFA Satellite-based SW Data Comparison with BSRN Data

Data Set	Bias (Wm ⁻²)	RMS (Wm ⁻²)	ρ	σ (Wm ⁻²)	N
Sat_DLR_ISIS_Ed001	-1.9211	15.7730	0.9859	15.6596	1978
Sat_FORTH_Ed01a	-14.1678	24.2317	0.9703	19.6637	1811
Sat_GEWEX_SRBGSW_Ed281	-7.2823	20.7451	0.9771	19.4299	1978
Sat_GEWEX_SRBQSW_Ed025	-0.7686	16.8880	0.9830	16.8747	1978
Sat_ISCCP_FD_Ed000_010	-1.5877	16.5076	0.9842	16.4352	1978
Sat_UMD_SRB_Ed033	7.6642	21.6148	0.9791	20.2155	1978

From Chapter 6: Contribution by Hinkelman, T. Zhang & Stackhouse

Chapter 6: Uncertainties Using Reference Data Sets: Zonal Analysis

	Data Set	Bias	RMS	ρ	σ	Ν
	CERES_SRBAVG_Terra_GEO	0.4	28.3	0.950	28.3	1252
	_MOD_Ed02d	18.2	20.0	0.953	8.4	140
SW		2.0	19.3	0.978	19.2	891
~		-17.4	52.7	0.911	49.8	221
(CERES		-2.6	20.3	0.977	20.2	1306
	DLR ISIS Ed001	5.0	11.2	0.952	10.1	140
Timo		-1.3	16.8	0.980	16.7	891
Ime		-10.7	31.5	0.972	29.7	275
D (1)		-15.9	29.7	0.954	25.2	1184
Perioa)	FORTH Ed01a	-3.3	11.7	0.934	11.2	140
-	_	-13.4	22.7	0.975	18.4	886
		-41.2	60.1	0.928	49.3	158
		-/.6	25.0	0.968	23.8	1306
Red - tropics	GEWEX_SRBGSW_Ed281	14.0	17.0	0.948	9.7	140
Red – tropics		-8.8	20.5	0.974	18.6	891
Green - Mid-		-14./	20.8	0.901	<u> </u>	1206
Orcen – Milu-		-1.0	17.4	0.970	20.8	140
late	GEWEX_SRBQSW_Ed025	0.2	16.6	0.979	16.6	891
lats		-12.8	31.7	0.973	31.7	275
Blue = polar		-1.9	19.8	0.978	19.7	1306
Dide polai		19.6	22.1	0.937	10.3	140
	ISCCP_FD_Ed000_010	-3.7	17.1	0.979	16.7	891
		-6.8	25.8	0.979	24.9	275

From Chapter 6: Contribution by Hinkelman, T. Zhang & Stackhouse

Chapter 6: Uncertainties Using Reference Data Sets: Surface Geographical Types

SW BSRN sites clustered by basic topographical surface type: CON = continental, COA = coastal, ISL = island, MOU = mountain, DES = desert, POL = polar

From Chapter 6; Contribution by Hinkelman, T. Zhang & Stackhouse

Chapter 8: Global Radiation Budget

Table 1. Global means and their 1 sigma uncertainties of various atmospheric properties considered for the surface flux uncertainty estimation.

Variables	Ocean	Land	Global	Reference
AOD	0.13±0.036	0.19±0.08		Remer et. al (2008)
SSA	0.97±0.02	0.95±0.04		Kinne (2008)
COD	3.9±0.5	3.9±0.5	3.9±0.5	ISCCP
Cloud Fraction (Fc)	0.73±0.05	0.59±0.07	0.70±0.05	Stubenrauch(2008)
Fc Diurnal	<1%	<1%	<1%	Wylie(2008)
Fc: High Cloud	0.26±0.07	0.27±0.04		Stubenrauch(2008)
Fc: Low Cloud	0.47±0.06	0.32±0.04		Stubenrauch(2008)
High Cloud Top Pres (hPa)	511±30	443±30	490±30	Wang (2000)
High Cloud Base Pres (hPa)	625±30	576±30	610±30	Wang(2000)
Low Cloud Top Pres (hPa)	866±30	811±30	850±30	Wang(2000)
Low Cloud Base Pres (hPa)	951±20	899±20	935±20	Wang(2000)
Re (μm)	15±2	13±2		Riedi (2008)
De (μm)	50±5	45±5		Kahn (2008)
Albedo	0.12±0.004	0.28±0.02	0.17±0.007	Zhang et al. (2007)
Skin Temp (k)	289.1±2.4	281.9±4.6	286.9±3.3	Zhang et al. (2007)
Near Surface Air Temp (K)	289.7±1.9	283.3±3.7	287.8±2.6	Zhang et al. (2006)
Precipitable Water (cm)	2.63 ± 0.34	1.86 ± 0.48	2.41 ± 0.39	Zhang et al. (2006)
Emissivity	0.924±0.037	0.971±0.039	0.938±0.038	Zhang et al. (2007)
Solar Constant (W m ⁻²)	1365-4	1365-4	1365-4	

Chapter 8: Global Radiation

Table 3. Estimated uncertainty in global all-sky surface fluxes (1 sigma).						
Variables	SWDN	SWUP	LWDN	LWUP	Net	
Average State	186.0	22.7	340.3	398.0	105.6	
AOD	2.0	0.2	0.3	0.0	1.7	
SSA	0.8	0.1	0.4	0.1	1.0	
Sfc albedo	0.4	1.1	0.0	0.0		
Skin Temp. (K)	0.0	0.0	0.1	17.5	17.3	
Air Temp. (K)	0.0	0.0	8.3	1.	7.9	
Precip. Water (cm)	2.1	0.2	5.2	0.4	3.4	
Emissivity	H	0.0	H	1.0	1.0	
High Cld Frac (%)	3.0	0.4	1.4	0.2	1.5	
Low Cld Frac (%)	2.9	0.4	2.5	0.2	0.7	
High COD	3.2	0.4	1.3	0.0	1.5	
Low COD	5.4	0.6	3.1	0.3	2.4	
High Cld Top Pres	0.0	0.0	5.1	0.0		
High Cld Base Pres	0.0	0.0	0.2	0.0	0.2	
Low Cld Top Pres	0.0	0.0	0.2	0.0	0.2	
Low Cld Base Pres	0.0	0.0	0.2	0.0	0.2	
High Cld De (µm)	0.1	0.0	0.1	0.0	0.1	
Low Cld re (µm)	0.1	0.0	0.2	0.0	0.1	
Solar Const. (wm ⁻²)	-0.5	-0.1	0	0	-0.5	
Overall Uncertainty	7.7	1.4	10.8	17.5	19.3	

Chapter 8: Global Radiation

(During

CERES

Period)

Chapter 8: Global Radiation

Surface

Fluxes

(During

CERES

Period)

Avg: 343.2 Wm⁻² 10 10 Avg: 395.1 Wm⁻² LW Dn LW Up 5 5 0 -5 -5 -10 -10 EBAF AVG_B3 CER_G SRB ISCCP FORTH EBAF AVG_B3 CER_G SRB ISCCP FORTH Avg: -52.0 Wm⁻² 10 10 -LW Net SW Dn Avg: 187.9 Wm⁻² 5 5 0 -5 -5 -10 -10 EBAF AVG_B3 CER_G SRB EBAF AVG_B3 CER_G SRB ISCCP FORTH ISCCP FORTH 10 SW Up 10 Avg: 22.8 Wm⁻² SW Net Avg: 165.2 Wm⁻² 5 5 0 ſ -5 -5 -10 -10 EBAF AVG_B3 CER_G SRB ISCCP FORTH EBAF AVG_B3 CER_G SRB ISCCP FORTH Avg: 113.2 Wm⁻² 10 NET 5 0 -5 -10 EBAF AVG_B3 CER_G ISCCP FORTH SRB

Chapter 9: Comparison to Models

From Chapter 9; Contribution by Kinne and Raschke

Radiative Flux Assessment Summary and Next Steps

- The GEWEX Radiative Flux assessment is making significant progress towards producing a community assessment of TOA and surface radiation flux estimates from satellite and model analysis.
 - New TOA solar irradiance measurements and discrepancies in computation of theoretical irradiance variability found and documented.
 - Surface measurement uncertainty being documented for surface error context.
 - Satellite-based radiative flux analysis being compared among algorithms and contrasted to reanalysis and model results. Large differences are being noted in time time and space.
- GEWEX-RFA lead authors and contributors are editing sections helping to assess radiative flux components.
 - Reviews will be sought for all chapters in the next 2 months
 - Suggested meeting in November
- Goal of producing a community-wide draft report for Dec 2011.

