

NIVER

C J Merchant^{*} and **J Kennedy^{**} (presenter)** *The University of Edinburgh **The UK Met Office

SST from space: not 'old hat'

"old hat": old-fashioned, over-used and over-familiar

- Reduced biases
- Stability / homogenity
- Sensitivity
- Uncertainty information
- Independence

A Tale of Two Projects

ATSR Reprocessing for Climate (ARC)

- Completed June 2011
- ATSR series SSTs
- I991 to mid 2011

Climate Change Initiative(SST CCI)

- Ongoing (in year 2 of 3)
- SST CDR user requirements
- New SST products in 2012
 - ATSRs and AVHRRs

For data:

www.neodc.rl.ac.uk/ browse/neodc/arc

- For report:
- www.esa-sst-cci.org

	Data level	Threshold	Break- through	Objective				
	2	0.1°C	0.05°C	0.01°C				
Requirements for acceptable level of bias to satisfy at least two thirds of								

the user group.

ARC $SST_{0.2m}$ minus drifting buoys

Nadir 2-chan

Nadir 3-chan

Stability / homogeneity

- Matters for change detection and trends
- Need low upper limit on trend artifacts in the record
 - E.g., drifting satellite calibration or overpass time
- Discontinuities should be negligible
 - E.g., jumps as different sensors come in and out of record
 - Bias correct SSTs with care!

	Aggregated over all spatial scales							
Data level	Threshold	Break- through	Objective					
2	0.05°C/dec	0.02°C/dec	0.01°C/dec					
	5 mK/yr	2 mK/yr	1 mK/yr					

Stability assessment in ARC

 Assessed discrepancy between ARC SST_{Im} and Global Tropical Moored Buoy Array (GTMBA) for trends

Region	Period	Time of day	Trend / mK yr ^{-I}	95% conf. int. / mK yr ⁻¹
Tropics	1993 - end	Day	-0.6	-2.6 < trend < 1.5
Tropics	1993 - end	Night	1.0	-1.4 < trend < 3.4

Sensitivity to SST

- Satellite retrieval of SST is a subtle inverse process
- Wherever prior information explicitly or implicitly enters the inverse process, the retrieved SST may not fully reflect SST variability
- Sensitivity to true SST variation should be a criterion for assessing SST CDRs

• Ideally
$$\frac{\partial \hat{x}}{\partial x} = 1$$
 for a CDR

Can be calculated using simulation of the inversion

Typical AVHRR retrieval (NLSST)

Change in AVHRR SST for a 1 K change in SST

Merchant et al, 2009, GRL doi:10.1029/2009GL039843

Sensitivity in ARC SST

Nadir 2-chan

Nadir 3-chan

Uncertainty information

- Need to improve uncertainty information in satellite SST datasets for climate users
- Within ARC and the SST CCI an uncertainty is attached to every SST
- Uncertainty model accounts for
 - Propagated radiometric noise
 - Knowledge (from simulation studies) of the limitations of the retrieval algorithm
 - Sub-sampling (observations are gappy due to clouds)
- The uncertainty needs to be validated too

Validation of ARC uncertainty estimates

Independence

In the SST CCI survey of climate users

- I 5% stated that it was essential for satellite SST CDR to be independent of *in situ* SST
- ▶ 45% stated it was preferable

To retrieve SST independently of in situ SST

- Need to do retrieval by radiative transfer
- Need excellent characterisation of sensor

For ARC SSTs

- Skin SST retrieval algorithm is fully independent of in situ SST
- Cloud screening is weakly dependent on in situ SST
- Skin to depth model used in situ in parameter tuning

Nearly-independent time series

Summary

- Climate users require lower SST biases (0.1 K or better) than are found in traditional meteorological SST products
- Stability is a key parameter. Excellent stability (mK/yr) is possible for ATSRs with careful exploitation of overlaps
- Sensitivity (or, equivalently, the amount of prior SST information embedded in CDR) should be quantified
- Uncertainty estimates should be part of the SST CDR and can be validated in their own right
- ARC SSTs are nearly independent of in situ observations, yet confirm the evolution of global SSTA in HadSST3

Acknowledgements

- ARC was funded by UK agencies:
 - Natural Environment Research Council
 - Defence Science and Technology Laboratory
 - Department of Energy and Climate Change
- SST CCI is funded by the European Space Agency
 - and builds on both ARC and work funded via the UK's National Centre for Earth Observation (NCEO)

• A few of the **many** contributing scientists are:

- Owen Embury Gary Corlett Lizzie Good
- Nick Rayner Roger Saunders David Llewellyn-Jones
- David Berry Liz Kent Katie Lean
- Pierre Le Borgne

Further Information

- I will be standing by standing by my poster in session C34 10:30-12:00 Wednesday
- If you are interested in using the CCI data for the user assessment email:
- nick.rayner@metoffice.gov.uk

For general info: c.merchant@ed.ac.uk

Further information

• For ARC project:

- Embury et al., 2011, Rem Sens Env, doi: 10.1016/j.rse.2010.10.016
- Embury and Merchant, 2011, RSE, doi: 10.1016/j.rse.2010.11.020
- Embury et al., 2011, Rem Sens Env, doi: 10.1016/j.rse.2011.02.028
- www.neodc.rl.ac.uk/browse/neodc/arc
- For bias and sensitivity issues SST retrieval
 - Merchant et al., 2009, GRL, doi: 10.1029/2009GL039843
- SST CCI User Requirements Document
 - www.esa-sst-cci.org \rightarrow Resources \rightarrow Documents

Further questions: c.merchant@ed.ac.uk