WCRP Conference, Denver

### Phytoplankton variability and its biological feedback

in the equatorial Pacific

(Observation and Model)

Jong-Yeon Park, Jong-Seong Kug

Korea Ocean Research & Development Institute (KORDI)

### **Data & Model description**

#### Observational Data

- Chlorophyll (measure of upper-ocean phytoplankton)
  - : Sea-viewing Wide Field-of-view Sensor (SeaWiFS) : SEP1997~ DEC2007
  - : Moderate Resolution Imaging Spectroradiometer (MODIS) : JAN2008~ DEC2009
  - : Regridding 9km x 9km  $\rightarrow$  2.5 x 2.5 degree

#### > Model

- MOM4p1-TOPAZ : global ocean + ice + <u>biogeochemistry model</u>
- <u>TOPAZ</u> (Tracers in the Ocean with Allometric Zooplankton)

: Considers 25 tracers (3 phytoplankton groups, organic matter, heterotrophic biomas s, C, N, P, Si, ....,)

- Forced experiment (1951- 2010)

| <b>Realistic Boundary forcing</b> | <b>Climatological forcing</b>                                       |
|-----------------------------------|---------------------------------------------------------------------|
| Surface Wind (6hr)                | Longwave flux, Specific humidity,<br>Surface temp., Shortwave flux, |

> Ocean surface albedo / surface net sh Shortwave penetration (Manizza et al. 200)

### **Model Performance**

#### **Obs.** (SeaWiFS+MODIS)



#### Model



### **Model Performance**





### **ENSO-related variability**



### **Biological Feedback**

#### Experimental Design

| <b>Mom4p1</b><br>(Hindcast run: 1951-2010) |            |                                                                  |
|--------------------------------------------|------------|------------------------------------------------------------------|
| <b>Exp.</b> 1                              | Exp. 2     | Exp. 3, 4, 5, 6                                                  |
| CHL_on                                     | CHL_0      | CHL_clim<br>(sfc, ~30m, ~50m, ~100m)<br>Higher CHL climatology ! |
| TOPAZ_ON                                   | TOPAZ_off  | TOPAZ_off                                                        |
|                                            | (Zero CHL) | (climatol. CHL)                                                  |

### **Biological Feedback - Mean**





### **Biological Feedback**

#### ➢ Test experiment

#### : "<u>CHL.off</u>" followed by "<u>CHL.on</u>"



nino3 MLD



no34 histogram

### **Biological Feedback - STDV**



### Summary

- Major modes of chlorophyll are associated with the mature phase and the transition phase of El-Niño.
- > Chlorophyll modifies the mean state



> Chlorophyll changes the ENSO amplitude



# Thank you.

## Backup

From Park et al. (2011, JGR)



### WP vs. CT El Nino





### **Model Performance**

Model

OBS





### Summary

- **Biological perturbation** is associated with the **ENSO** in the equatorial region.
- First two leading modes of chlorophyll are associated with the mature phase of El-Niño during winter and the decaying phase of El-Niño during summer.

#### Growth-control factors

(ocean circulation, mixed-layer dynamics, and incoming shortwave radiation.)



> Chlorophyll variations associated with ENSO give the ~ 2 W/m<sup>2</sup>/1 $\sigma_{PC1}$  shortwave flux feedback on the equatorial Pacific.

### ?? To improve climate for duction

- Cloud physics
- Aerosol radiative forcing
- Surface scheme
- Chemical process
- Glacier dynamics



- Half of the world's oxygen is produced via phytoplan The concentration of phytoplankton interact kton photosynthesis. [Field et al., 1998; Behrenfeld et al., 2 with the tropical variability. [Chavez et al., 19 001]
  99; Timmermann and Jin, 2002; Behrenfeld et al., 20
  - 06; Henson et al., 2010]
  - Contribution of typhoon to annual production is 20~30% in the SCS. [Lin et al. 2003]
- > ENS
  - Equa sour here a
  - and

### Data

#### Chlorophyll (measure of upper-ocean phytoplankton)

- Sea-viewing Wide Field-of-view Sensor (SeaWiFS) : SEP1997~ DEC2007
- Moderate Resolution Imaging Spectroradiometer (MODIS) : JAN2008~ DEC2009
- 9km x 9km → 2.5 x 2.5 degree

#### Ocean surface albedo / surface net shortwave flux

- Clouds and the Earth's Radiant Energy System (CERES) : MAR2000~OCT2005
- International Satellite Cloud Climatology Project (ISCCP): JULY1983~DEC2007

#### > Oceanic variables (vertical velocity)

- Global Ocean Data Assimilation System (GODAS)

#### > Atmospheric variables (radiation flux, u(v)-momentum flux)

- NCEP/DOE Reanalysis 2

#### SST: NOAA Optimum Interpolation (OI) SST V2

#### > Precipitation

- Climate Prediction Center Merged Analysis of Precipitation (CMAP)

### **General feature**



?? Spatio-temporal variability of chlorophyll related to E NSO

**??** Regional differences in the chlorophyll variability







#### Asymmetric response to ENSO





"Cloud (OLR) effect removed "

#### Feedback by ENSO-driven CHL



Figure 11. Regressed fields of the CERES net shortwave flux at the surface against the PC1 of chlorophyll concentration. Dotted areas denote S

# Variability of equatorial chlorophyll & its biological feedback

Jong-Yeon Park Jong-Seong Kug Jisoo Park Chan-Joo Jang Sang-Wook Yeh

Korea Ocean Research & Development Institute (KORDI)