Factors influencing changes in regional sea level projected by AOGCMs

Till Kuhlbrodt¹, Jonathan Gregory^{1,2}, Anne Pardaens², Jason Lowe², Nathaelle Bouttes¹ ¹ NCAS-Climate, University of Reading, UK ² Met Office Hadley Centre, Exeter, UK

24th October 2011

Outline

- Regional patterns of sea level change in the IPCC AR4 models, and their causes
- Analysis of ocean heat uptake processes in HiGEM 1.2
 - Case study: Indian Ocean at the latitudes of the Antarctic Circumpolar Current
- Fluxes vs. fields: Role of a model's initial tracer distribution for modelled sea level change

CMIP3 (IPCC AR4) model mean (w.r.t. global mean)

- SRES A1B, end of 21st century
- Projected sea level change is not globally uniform

Large uncertainty in projections of regional sea level change

Spread in projections has not been reduced since the TAR.

2 x standard deviation (m)

0.00 0.06 0.12 0.18 0.24 0.30

Pardaens et al. (2011)

Dynamical decomposition of sea level change in HadCM3 under 2% CO2

Sea level change (m) wrt global mean

Baroclinic

$$g\nabla\eta' = -\frac{g}{H\rho_0} \int_{-H}^{0} \int_{z}^{0} \nabla\rho dz' dz - f\underline{k} \times \overline{\underline{u}}$$

Sea

level

Baroclinic ≈ Steric Barotropic

Lowe and Gregory (2006)

Geographical pattern is predominantly steric

Pardaens et al. (2011)

Correlation coefficients between sea level change and AMOC change at 30N

Pardaens et al. (2011)

HiGEM 1.2

- Coupled GCM based on UKMO HadGEM1, higher resolution
- Atmosphere: 0.83° lat x 1.25° lon (N144)
- Ocean: eddy-permitting 1/3° x 1/3°
 - Gent & McWilliams parameterisation of eddy-induced transports not used
 - Constant isopycnal diffusivity
 - Sea ice model integrated in ocean component, using elements of CICE
- o Details in Shaffrey et al., J. Clim., 2009

HiGEM I.2 model runs

- Control run extended by 24 years (total length is now 135 years)
- **CO₂ run:** 4xCO₂ instantaneously, run for 20 years
- Climate sensitivity is ~2.5K
- Compare last three years of the CO₂ run (2107 to 2110) with the respective years of the control run
- Detailed diagnostics of the heat advection equation $(d\theta/dt)$:

Diffusion (x-, y- and z-component)	Surface fluxes
Penetrating solar radiation	Ice physics (mainly from melting)
Mixed layer physics	Convection
Advection	(Polar Fourier filtering)

Preliminary results

Ocean heat uptake in the CO_2 run

XFRMR Time mean

From 1/12/2107 to 1/12/2110

Zonal total of OHU

Global maximum (per degree latitude) in Southern Ocean

Changes of zonal wind stress

- In the CO₂ run the zonal wind stress maximum in the SO becomes stronger and moves poleward
- In the SO, the meridional gradient of zonally averaged τ_x steepens

Ocean heat uptake in CO₂ run

XFRMR Time mean

From 1/12/2107 to 1/12/2110

Temperature profile: 0E to 90E averaged

o Pronounced warming in the upper ~1500 m south of 38S

Indian Ocean sector

- The *dθ/dt* terms analysis suggests that the heat uptake in this area is mainly due to a large additional warming through advection
- This is, to some extent, compensated by more cooling from surface fluxes and slightly less warming from penetrating solar radiation

w_geo = curl[tau/(rho_0 f)]

From 1/12/2107 to 1/12/2110

Ekman Pumping

- Upwelling velocity at the base of the Ekman layer $w = curl[\tau/(\rho_0 f)]$
- More downwelling due to wind stress changes

- Is modelled dynamical SLC determined by the surface fluxes or rather by the initial fields of temperature and velocity?
- Section 2018 Se
- FAMOUS: low-resolution, reduced physics version of HadCM3 (Smith et al., 2008)
- Idealized 1%/yr CO₂ runs (100 years, averages over last 10 years)
- Apply anomalous fluxes of heat, water and momentum (from the CO₂ runs) to the FAMOUS control run
- Use a passive anomalous tracer (Banks & Gregory, 2006)

FAMOUS with FAMOUS anomalous fluxes

Looks similar to 1%CO2 run

Control+ heat

correlation for wind	0.48
correlation for P-E	0.39
correlation for heat	0.49
Correlation for all	0.72

FAMOUS with HadCM3 anomalous fluxes

1%CO2 HadCM3

Control+ P-E

xfxzf.000100 control+ P-E HadCM3 (1%C02) 90N 45N 905 905 905 90E 180 90W 0 -0.3 -0.2 -0.1 0.05 0.15 0.25

Control+ wind+P-E+heat

xganm.000100 control+ heat+wind+P-E HadCM3

- Doesn't look very similar to 1%CO2 run
- Especially in the Southern Ocean

Correlation with HadCM3

- correlation for wind 0.10
- correlation for P-E 0.09
- correlation for heat 0.34
- correlation for all 0.32

Correlation with FAMOUS

correlation for wind0.34correlation for P-E0.63correlation for heat0.53correlation for all0.51

Control+ wind

Control+ heat

FAMOUS + heat HadCM3

xgann.000100 control + Heat thermosteric T

xgann.000100 control + Heat thermosteric T—T2

xfwzf.000100 control HadCM3 + Heat HadCM3 thermosteric T

xfwzf.000100 control HadCM3 + Heat HadCM3 thermosteric T2

National Centre for Atmospheric Science

NATURAL ENVIRONMENT RESEARCH COUNCIL

Thermosteric sea level

Contribution from anomalous flux

Different in the Southern Ocean

Reservoir redistribution

Redistribution more important: role of

- Change of circulation
- Initial field

Summary (I)

- The TAR and AR4 (CMIP3) climate models show a large spatial variability of sea level change, but disagree about details of patterns
- o Patterns are principally baroclinic and steric
- More than average SL rise in Arctic is halosteric, presumably hydrological
- Strong compensation in Atlantic between halosteric and thermosteric, associated with changes in advection by AMOC
- Less than average SL rise near Antarctica is thermosteric

Summary (2)

- The HiGEM 1.2 runs, with the comprehensive diagnostics, permit a detailed understanding of ocean heat uptake processes
 - The ocean heat uptake maximum in the Indian sector of the Southern Ocean is wind-driven through increased Ekman pumping
 - See posters today (M165A) and on Thursday (Th22A)
- Swapped anomalous fluxes" experiments with FAMOUS and HadCM3 suggest that, for modelled sea level change, the initial fields and the redistribution are more important than the anomalous fluxes

Questions?