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Concept of Extreme Event Attribution

• Observe some extreme weather event

• Run a large number of climate models under anthropogenic
forcings; measure weather variable corresponding to the ob-
served extreme event

• Repeat but under either natural forcings or using control
model runs

• Estimate P1: probability of extreme event under anthro-
pogenic scenario and P0: probability of extreme event under
natural or control scenario

• The fraction of attributable risk is

FAR = 1−
P0

P1
.

As an example, we consider the European heatwave of 2003.
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Analysis of 2003 Heatwave

Stott, Stone and Allen (Nature, 2004) reduced the problem to

a calculation of JJA land temperature annual averages over the

region 30oN to 50oN, 10oW to 40oE.

They used 4 runs of the HadCM3 climate model, under both

anthropogenic and natural (solar, volcanic only) forcings.

We have repeated this exercise but using anthropogenic and con-

trol run forcings from the public AR4 database at PCMDI.
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Observed anomalies for JJA mean temperatures for 1900–2008
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and means over all model runs.
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Statistical Methods

• Calculations based on normal distributions — not usually

advisable when extreme values are of interest

• Nonparametric methods — avoids making unjustified distri-

butional assumptions, but cannot be extrapolated beyong

range of observed data

• Methods based on extreme value theory (GEV, GPD) (The

method proposed here)

• Other families of probability distributions that include long-

tailed cases? (A possible alternative)
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(Schär et al., Nature, 2004) 

11



 

 

 

(Hoerling et al., GRL, 2007) 
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Stott, Stone and Allen (2004)

13



Stott, Stone and Allen used the generalized Pareto distribution

(GPD) for exceedances over a high threshold to estimate extreme

value tail probabilities.

They didn’t use the observed 2003 anomaly of 2.3K but instead

1.6K, justified as being close to the largest observed anomaly up

to 1999.

However they also include a (conventional) detection and attribu-

tion step; appears to be necessary because of the scale mismatch

problem between observations and model data.
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The scale mismatch problem: Observed series and three 20C
model runs, up to 2000
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The Challenge:

Find a statistically coherent approach that allows for the non-

normal nature of extreme tail probabilities, that also takes into

account the scale mismatch problem.
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Proposed Statistical Model

Yt: Real-data observation in year t (1 ≤ t ≤ T )

Zm,i,t: Model data for model m (1 ≤ m ≤M), run i (1 ≤ i ≤ nm)
and year t (1 ≤ t ≤ T )

Assume:

Yt = µt + εt,
Zm,i,t −Bm

Am
= µt + ηm,i,t,

µt =
q∑

j=0

βjxt,j,

εt, ηm,i,t ∼ F,

F (ε) ≈ exp

−
(

1 +
ξε

ψ

)−1/ξ

+

 as F (ε)→ 1.
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Statistical Model Parameters

β0, ..., βq are regression parameters for spline-based trend

Am and Bm are scale/location parameters for model m; reflect

bias and scale mismatch

Common error cdf F for both the model and observational errors

Common GEV tail behavior of F ; scale and shape parameters ψ

and ξ

An extension: allow ψ and ξ parameters to be different for models

and observations
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Probability of Exceeding a Design Value

Estimate probability that some future value Y ∗, for which the

GEV parameters are µ∗, ψ∗, ξ∗, exceeds a design value u∗.

Assume ψ∗ = ψ, ξ∗ = ξ and µ∗ =
∑q
j=0 βjx

∗
j for given values of

x∗j , 0 ≤ j ≤ q, usually defined so that x∗j = xT,j, the covariates

that correspond to the final year T . The true probability is then

p∗ = 1− exp

−
(

1 + ξ∗
u∗ − µ∗

ψ∗

)−1/ξ∗

+


Estimation of p∗: Maximize the likelihood over all parameters

Profile Likelihood Approach: Maximize likelihood constrained to

a fixed value of p∗. This is used to derive confidence intervals.
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Example Model Fits

u∗ Threshold q P1 P0 FAR
1.6 85% 4 0.03461 0.00419 0.87909
1.6 85% 6 0.03103 0.00429 0.86161
1.6 80% 4 0.04283 0.00382 0.91083
1.6 80% 6 0.03806 0.00385 0.89891
1.6 75% 4 0.03329 0.00392 0.88236
1.6 75% 6 0.01982 0.00423 0.78659
1.6 70% 4 0.02254 0.00381 0.83099
1.6 70% 6 0.01588 0.00435 0.72583
2.3 85% 4 0.00024 0.00038 -0.53739
2.3 85% 6 0.00013 0.00023 -0.86897
2.3 80% 4 0.00333 0.00025 0.92631
2.3 80% 6 0.00294 0.00031 0.89444
2.3 75% 4 0.00159 0.00020 0.87264
2.3 75% 6 0.00092 0.00040 0.56705
2.3 70% 4 0.00117 0.00022 0.81168
2.3 70% 6 0.00068 0.00045 0.34080
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Unfortunately, confidence intervals associated with these esit-

mated exceedance probabilities are very wide.

Example: for the model with 80% threshold, 4 degrees of free-

dom for the spline representation of the trend —

u∗ = 1.6, estimated p∗ = .042

95% confidence interval from 0.006 to 0.2

u∗ = 2.3, estimated p∗ = .0033

95% confidence interval from < 10−6 to 0.036
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SUMMARY

• The results confirm there is a high FAR associated with the

anthropogenic effect (of the order of 0.9 in several estimates)

• However, confidence intervals for P0 and P1 are very wide

• We still don’t have a satisfactory method of computing a

confidence interval for the FAR, that correctly takes account

of all the unknown parameters
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