Atlantic Hurricanes and Climate Change

WMO Expert Team:

John McBride
Tom Knutson
Johnny Chan
Kerry Emanuel
Isaac Held
Greg Holland
Chris Landsea
A.K. Srivastava
Masato Sugi

Tom Knutson

Geophysical Fluid Dynamics Lab/NOAA
Princeton, New Jersey

http://www.gfdl.noaa.gov/~tk

GFDL
Collaborators:

Hurric

§ o i
b 3 . ;
Aaa S /
" .
v &
B . 1 4

ne Katrina, Aug. 200

P AR

GFDL model simulation of Atlantic hurricane activity

Joe Sirutis
Isaac Held
Gabe Vecchi
Bob Tuleya
Morris Bender
Steve Garner
Ming Zhao
S.-J. Lin




Talk Outline

1.Summary of WMOQO Expert Team Assessment
2. Analysis of Observations

3. Modeling Studies
4.Remaining Issues...or could we be wrong?



Summary: WMO Expert Team Assessment

Climate Change Detection and Attribution:

* |t remains uncertain whether past changes in tropical cyclone activity
exceed natural variability levels.

Projections for late 21st century:

* Likely fewer tropical storms globally (~no change to -34%).

Likely increase in global average hurricane wind speeds (+2 to11%)

More frequent very intense storms (> 50% chance these will increase
by a substantial percentage in some basins).

Likely higher hurricane rainfall rates (~ +20% within 100 km of storm.

Projections for individual basins (e.g., Atlantic) show large variations
between modeling studies for all tropical cyclone metrics.

Source: Knutson et al., 2010: Tropical Cyclones and Climate Change. Nature Geoscience, 3, 157-163.



There is some recent evidence that overall Atlantic hurricane
activity may have increased since in the 1950s and 60s in
association with increasing sea surface temperatures...
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Statistical projections of 21st century Atlantic hurricane activity
have a large dependence on the predictor used.

% Change in Power Dissipation Index (relative to 1981-2000)

% Change in Power Dissipation Index (relative to 1981-2000)

Percent Change in Atlantic Tropical Cyclone Power Dissipation Index: Observed and Projected

Relative to 1981-2000 average:2.13x10"' m’s”
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The frequency of tropical storms (low-pass filtered) in the Atlantic basin 6
since 1870 has some correlation with tropical Atlantic SSTs
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Adjustments to storm counts based on
ship/storm track locations and density
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Global Tropical Cyclone
Intensity Trends

There is some statistical
evidence that the strongest
hurricanes are getting stronger.
This signal is most pronounced in
the Atlantic. However, the
satellite-based data for the global
analysis are only available for
1981-2006. It remains uncertain
whether this change exceeds the
levels due to natural variability.

Quantile regression
computes linear trends for
particular parts of the
distribution. The largest
increases of intensity are
found in the upper quantiles
(upper extremes) of the
distribution.

Source: Elsner et al., Nature, 2008.8



Zetac Regional Model reproduces the interannual variability 9
and trend of Atlantic hurricane counts (1980-2006)

18-km grid model nudged toward large-scale (wave 0-2) NCEP Reanalyses

Atlantic Hurricanes (1980-2006): Simulated vs. Observed

Correlation = 0.84; Linear trends: +0.21 storms/yr (model) and +0.15 storms/yr (observed).
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The 26.5°C “threshhold temperature” for tropical storm formation:
a climate dependent threshhold...

SST associated with tropical storm formation
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The model provides projections of Atlantic hurricane and tropical

1

storm frequency changes for late 215t century, downscaled from a

multi-model ensemble climate change (IPCC A1B scenario):

1) Decreased frequency of
tropical storms (-27%) and
hurricanes (-18%).
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2) Increased frequency and
intensity of the strongest
hurricanes

(5> 12)

3) Caveat: this model does
not simulate ILurricanes as
strong as thoge observed.
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Modeled Impact of Anthropogenic Warming on the Frequency of Intense
Atlantic Hurricanes, Bender et al., Science, 2010.
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Late 21st Century Climate Warming Projection-- Average of 18 CMIP3 Models

Modeled Category 4 & 5 Hurricane Tracks
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Comparison of Recent Atlantic Hurricane Trends vs 215t Century Projected Trend Rates
(in percent per decade)

Observed 1971-2010 Trend in Atlantic Hurricane Counts A Model Projection of 215t Century
(Percent per Decade) Trend in Atlantic Hurricane Counts
(Percent per Decade)
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Emergence Time Scale: Assume the observed Cat
4+5 data since 1944 represents the noise (e.g. through
bootstrap resampling). Add a 10% per decade trend to
samples of this noise and determine the timescale at
which 95% of the resulting series have a positive trend.

Estimate: ~60 yr

15

Number of Cat 4+5 Atlantic Hurricanes U.S. Landfalling Cat 4-5 hurricanes (1851-2008)
With Emanuel Adjustment for Early Storm Intensities
Line: 20-yr running mean; source: HURDAT
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Sensitivity tests:
i) assume residuals from a 4t order polynomial: 55 yr;
ii) resample chunks of length 3-7 yr: 65-70 yr

Source: Bender et al., Science, 2010.




The role of lower stratospheric / upper tropospheric temperature trends:

* NCEP reanalyses show strong cooling trends since 1980 in tropopause transition
layer (TTL) temperatures in the tropics — resulting in increasing potential intensity--but
are these trends reliable?

 Emanuel’s statistical/dynamical downscaling framework suggests that the cooling
TTL caused increased Atlantic tropical storm frequency since 1980, but current GFDL
dynamical models do not show this sensitivity.

Statistical/Dynamical Downscaling of Atlantic
Tropical Storm Frequency (1870-2005)

Potential Intensity trends since 1980
from NCEP Reanalysis
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Source: K. Emanuel, AMS Hurricanes and Tropical Meteorology Conference abstract, 2010.



NCEP Reanalysis: large rising trends in Potential Intensity (1982-2007)
which are not widely present in a global model forced with observed SSTs.

a) HadISST-foced AGCM 1:30°S-30°N Mean = -0.29 m/s/25 years
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Simulating past variability in Atlantic tropical cyclone activity
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The atmospheric temperature profile has an important
influence simulated intensities in the GFDL hurricane model
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How have tropical tropospheric and lower stratospheric
temperature changed?

Vertical profile of tropospheric warming:

» Models and theory predict that the vertical profile of tropical tropospheric warming
will amplify with height, while radiosonde-based and some satellite-based
observations suggest that the troposphere has warmed uniformly with height. A
uniform warming with height would be ‘de-stabilizing’, and would imply greater future
hurricane activity increases than currently projected. Modeling studies and critical
reanalysis of observations (e.g., using winds to infer temperature trends) suggest that
the observed of ‘destabilization’ of tropical temperatures from radiosondes and
satellites are likely unreliable.

Trend (1970-2005) derived
from Radiosonde winds
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Conclusions:

It is premature to conclude that human activity--and particularly
greenhouse warming--has already had a detectable impact on Atlantic
hurricane activity.

Atlantic tropical storm and hurricane counts--after adjustment for
estimated missing storms--do not show significant increasing trends since
the late 1800s.

GFDL model late 215t century (ensemble) progections suggest a decrease
in the number of hurricanes in the Atlantic (-24% to -32%), but nearly a
doubling in the frequency of very intense (Cat 4-5) hurricanes by 2100.
Estimated emergence timescale of order six decades.

Substantial uncertainties depending on which global model provides
climate change conditions for downscaling. But no indications of a large
Atlantic PDI or potential damage sensitivity (e.g. 300% by 2100) as
obtained from statistical extrapolation.

Remaining caveats: i) uncertainties in climate model projections (SST
patterns, lapse rate changes, cloud feedback, indirect aerosols);
i) intense hurricane simulations; and iii) limitations of past observations.
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Tropical Cyclone Intensity Trends in Various Basins

Maximum wind speed (m s7)

There statistical evidence that the
strongest hurricanes are getting

stronger is most convincing for
the Atlantic (1981-2006).
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Source: Elsner et al., Nature, 2008.

The North and South Indian
Ocean data also suggest
increased intensity. Satellite

«—| view angle changes over time in

those regions necessitated
homogeneity adjustments.

The intensity change signal is
quite weak for the three Pacific
basins.




The control model reproduces the observed close relationship
between SST and hurricane frequency (1980-2006), but this
statistical relationship does not hold for future human-caused
warming in the model.
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Hurricane frequency actually
decreases by 18% in the warm
climate case... although the model
does not simulate hurricanes as
intense as observed.

Lesson: Caution using correlations from the present climate to make future climate projections...

Source: Knutson et al., Nature Geoscience (2008).
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The model provides projections of Atlantic hurricane and tropical

25

storm frequency changes for late 215t century, downscaled from a
multi-model ensemble climate change (IPCC A1B scenario):

1) Decreased frequency of
tropical storms (-27%) and
hurricanes (-18%).
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2) Increased frequency and
intensity of the strongest
hurricanes

(5> 12)
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3) Caveat: this model does
not simulate hurricanes as
strong as those observed.
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intensity increase is
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for decreased frequency
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What environmental variables best ‘explain’ differences in
Atlantic Tropical Storm Frequency projections?

Statistical model using local Atlantic MDR SST Statistical model using Atlantic and Tropical SST
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Normalized Tropical Atlantic Indices 27
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Category 4-5 Hurricanes (27 Seasons); GFDL Hurricane Model (2 Versions)
Downscale of Zetac Control and CMIP3 Ensemble Climate Change

NCEP Version (GFDL) NAVY Version (GFDN)
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Source: Bender et al., Science, 2010.



Control Climate 29
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Tropical cyclone activity: Late 215t century projected 30
changes
GFDL 50-km HIRAM, using four CMIP3-based projections of SSTs.
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Sources:
Vecchi and Knutson (2008)
Landsea et al. (2009)
Vecchi and Knutson (in preparation)
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Normalized Tropical Atlantic Indices
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WMO EXPERT TEAM SUMMARY ASSESSMENT:

Detection and Attribution:

It remains uncertain whether past changes in any
tropical cyclone activity (frequency, intensity, rainfall,
etc.) exceed the variability expected through natural
causes, after accounting for changes over time in
observing capabilities.

Source: Knutson et al., 2010: Tropical Cyclones and Climate Change. Nature Geoscience, 3, 157-163.



WMO TEAM SUMMARY ASSESSMENT:

Tropical Cyclone Projections: Frequency

It is likely that the global frequency of tropical cyclones
will either decrease or remain essentially unchanged
due to greenhouse warming. We have very low
confidence in projected changes in individual basins.
Current models project changes ranging from -6 to
-34% globally, and up to £ 50% or more in individual
basins by the late 21st century.

“Likely”: >67% probability of occurrence, assessed using expert judgment



WMO TEAM SUMMARY ASSESSMENT:

Tropical Cyclone Projections: Intensity

Some increase in mean tropical cyclone maximum
wind speed is likely (+2 to +11% globally) with
projected 215t century warming, although increases
may not occur in all tropical regions. The frequency of
the most intense (rare/high-impact) storms will more
likely than not increase by a substantially larger
percentage in some basins.

“More likely than not™: >50% probability of occurrence,
assessed using expert judgment



WMO TEAM SUMMARY ASSESSMENT:

Tropical Cyclone Projections: Genesis,
Tracks, Duration, and Surge Flooding

We have low confidence in projected changes in
genesis location, tracks, duration, or areas of impact.
Existing model projections do not show dramatic
large-scale changes in these features. The
vulnerability of coastal regions to storm surge flooding
IS expected to increase with future sea level rise and
coastal development, although this vulnerability will
also depend on future storm characteristics.



Attribution of tropical cyclone (hurricane)
changes to anthropogenic forcing?

* Detection: is there an observed change that exceeds
“Internal variability”?

 Attribution: is the observed change consistent with
expected anthropogenic influence? And inconsistent
with alternative explanations?

* Models/theory must reconcile with observations

 (Observations must be assessed for “false trends” based
on evolving observational capabilities
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Now a more robust
result, as several
dynamical or
statistical-dynamical
models can simulate
recent Atlantic tropical
cyclone interannual
variability and trends...
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Atlantic Hurricanes and Climate Change

Hurricane Katrina, Aug. 2005

Tom Knutson

Geophysical Fluid Dynamics Lab/NOAA
Princeton, New Jersey

http://www.gfdl.noaa.gov/~tk

P

GFDL model simulation of Atlantic hurricane activity

GFDL

Collaborators:

Joe Sirutis
Isaac Held
Gabe Vecchi
Bob Tuleya
Morris Bender
Steve Garner
Ming Zhao
S.-J. Lin
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Tropical Cyclones and Climate
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Tropical Cyclones

February 2010

World Meteorological Organization
Weather Research Programme
Working Group on Tropical Meteorology Research




Expert Team Members:

John McBride, Co-Chair Center for Australian Weather and Climate Research,
Melbourne, Australia

Tom Knutson, Co-Chair Geophysical Fluid Dynamics Laboratory/NOAA,
Princeton, USA

Johnny Chan University of Hong Kong, Hong Kong, China

Kerry Emanuel Massachusetts Institute of Technology, Cambridge, USA
Greg Holland  National Center for Atmospheric Research, Boulder, USA
Chris Landsea National Hurricane Center/NOAA, Miami, USA

Isaac Held Geophysical Fluid Dynamics Laboratory/NOAA, USA

Jim Kossin National Climatic Data Center/NOAA, Madison, USA

A.K. Srivastava India Meteorological Department, Pune, India

Masato Sugi Research Institute for Global Change/JAMSTEC, Yokohama,

Japan



Linear trends in tropical storm track density (1878-2006):
Decreases in the Gulf of Mexico and Caribbean
Increases mostly found in the open Atlantic and off the
U.S. East Coast (based on original, unadjusted data)...

o 4| (@) Records with Wind > Gale, Undajusted HURDAT

I I | | | | I 1 I I
110°w 20°w 70°wW 50°w 30°wW 10°w

S I ) E— I I T | I I
-0.6 -05 -04 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
(Storm-Days per 2.5°x2.5° Cell per Year) per Century

Source: Vecchi and Knutson, J. Climate, 2008.
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Ship tracks have changed in density and location over time
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Reconstructing past tropical cyclone counts

Satellite-era (1965-2006) storm tracks assumed perfect.

Apply satellite-era storm tracks to documented ship
tracks (ICOADS).

Storm detected if ship within radius of tropical storm
force winds (17 m/s). First detection must occur
equatorward of 40N. Monte Carlo simulation, varying
storm radii within reasonable bounds.

All land assumed to be “perfect detector” of tropical
storms (equatorward of 40N)—planned to further test...

Assume all relevant ship tracks are in data base—plan
further tests with additional tracks. (First will look for
evidence of storms in “new” ship data.)



Estimated probabilities that individual cyclones (1966-2006)
were ‘missed’ by the observing systems for earlier decades...
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Atlantic Tropical Storm counts show no significant trend from 1878
after adjusting for ‘missing storms’ based on ship track densities.

28 — Linear Trends:

| +1.60 storms/century (1878-2006)

+4.39 storms/century
24 —

Hurricanes, Tropical, and Subtropical Storms
N >
L]
——
. ——
—‘;

— Adjusted Annual Storm count (add.)
=== Adjusted Five-year storm count (add.)

—— Our Additive Adjustment

==+ Our Multiplicative Adjustment
95% Method Uncertainty on
Adjusted Storm Count

| A

0

1880 1900 1920 1940

Trend from 1878-2006: Not significant (p=0.05, 2-sided tests, computed p-val ~0.2)

1960 1980

Trend from 1900-2006: s significant at p=0.05 level

Source: Vecchi and Knutson, J. Climate, 2008.
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The rising trend in Atlantic tropical storms is due mostly to
very short lived storms (< 2 day duration)
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Atlantic tropical storms (< 2 day duration) show a strong rising trend, but
storms of >2 day duration--adjusted for missing storms--do not show a trend.
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Application of Vecchi/Knutson ship-track methodology to hurricanes

Smoothed Annual Count of Cat. 1-5 Atlantic Storms

o
|

ive-year smoothed count (storms per year)

—— Unadjusted Count
= = = Median of pair-
wise slopes fit of

unadjusted count | _

2 —
—— Adjusted Count
= = Median of pair-
wise slopes fitof [~
adjusted count
0— I I I I I I I I I I I I
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Sources: Vecchi and Knutson, GFDL, manuscript in preparation
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GFDL Zetac Model: A new high-resolution regional model for Atlantic
hurricane season simulations...

» The model runs for full hurricane seasons, nudged to NCEP reanalyses.
* Model grid spacing: 18km.
* Model does not parameterize moist convection.
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Zetac Regional Model Downscaling:

Tropical Storm Formation

a) Observed

16

o

255 265 275 285 295 305 315 325 335 345 355

c) Simulated

255 265 2v5 285 295 305 315 325 335 345 355

Note:

Source: Knutson et al., Bull. Amer. Meteor. Soc, 2007.

geographical distribution of storms

Tropical Storm Occurrence

b) Observed

T T I
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d) Simulated
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Model uses large-scale interior nudging to NCEP Reanalysis
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Zetac Regional Model Downscaling:
Distribution of hurricane occurrence

« Observed
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* Simulated
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Note: Model uses large-scale interior nudging to NCEP Reanalysis

Source: Knutson et al., Bull. Amer. Meteor. Soc, 2007.
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Wind-pressure relationship
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...the 18km grid
model’s poor wind-
pressure relation at
lower central
pressures leads to
maximum near-
surface winds of ~47
m/s, considerably
lower than observed...




Climate Change Experiments

 Re-run all 27 seasons with the Zetac regional
model, but modify the NCEP Reanalysis forcing by
a 3-D climate change perturbation field:

— Multi-model ensemble climate change. IPCC A1B
scenarion. 18 CMIP3 climate models (similar to
Vecchi and Soden, 2007).

— Compare modified climate runs with original 26 year
control runs.

— Interannual/decadal variability and weather are
unaltered from the control run.

— Multi-model ensemble climate change approach
reduces problems with corruption of climate change
signal by internal multi-decadal variability in the
models.

Source: Knutson et al., Nature Geoscience, 2008.
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18-Model CMIP3
Ensemble-Mean
Climate Change
Projections (A1B
Scenario, Late 21st
century)
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Climate Model Dependence: Zetac downscaling (Warm minus Control)

Tropical Storms:
18-model ens.: -33%

Hurricanes:
18-model ens.: -24%

Major Hurricanes:
18-model ens.: -5%
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= A1B_gfdl_cm2.0 (1.46) = A1B_ens18 (-0.16) = A1B_hadgem1 (-0.77)
= A1B_gfdl_cm2.1 (0.92) ® A1B_miroc-hi (-0.23) ® AlB_ingv (running)
m Al1B_mri (0.30) = A1B_mpi (-0.39)

Al1B_cesm3 (0.77) ® A1B_hadcm3 (-0.46)

Source: Knutson, Sirutis, et al., unpublished
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The new model simulates increased hurricane rainfall rates in
the warmer climate (late 215t century, A1B scenario) ...
consistent with previous studies...

Present Climate
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GFDL HIRAM 50km grid global model:
Simulated vs Observed Tropical Storm Tracks (1981-2005)

observed tracks (1961-2005)
,__ ) ’y

mtude

Source: Zhao et al. J. Climate (2009)
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Global Model Tropical Cyclone Climate Change

Experiments: Use A1B Scenario late 21st century projected
SST changes from several CMIP3 models

GFDL CM2.1 HadCM3

Unit: Deg C

Source: Zhao, Held, Lin, and Vecchi (J. Climate, 2009)



Zetac and C180 projected hurricane changes are fairly comparable
for 6 of 8 common cases tested so far...suggesting that uncertainty
due to downscaling may be dominated by the climate model inputs,
rather than the downscaling models.

Percent Change (Zetac Model)

Projected Change in Atlantic Hurricane Frequency: C180 vs Zetac

Late 21st century A1B Scenario; mixed season lengths: Zetac: Aug-Oct; C180: Annual

Fri Jan 15 13:58:43 2010
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C180 results provided by Ming Zhao, GFDL, see Zhao et al. 2009.



Intensities of the strongest storms?

« Since the 18-km grid zetac model fails to
simulate wind speeds greater than ~47 m/s, a
second downscaling step is necessary.

Use GFDL Hurricane Prediction System
(operational at NCEP) to re-simulate all

individual storms from the zetac regional
climate model runs (control and warm

climates).

> So far only done for the Atlantic basin...
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Hurricane Katrina Coupled Model Forecast
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EXPERIMENTAL DESIGN 02

Latest version of the GFDL Hurricane Prediction system
used for this study (Operational at NCEP and FLEET
since 1995).

Every Zetac Regional Climate model tropical storm was
downscaled to the GFDL hurricane prediction model for
the 27 years from 1980 to 2006 (control and warm
climate).

All forecasts were begun 3 days before maximum
iIntensity obtained by the Zetac model or when Zetac
model first designated system as tropical storm (if less
then 3 days before maximum intensity).

GFDL Hurricane Model runs were 5 days duration.
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The GFDL Operational Hurricane Prediction System simulates a realistic
distribution of TC intensities in both operational and climate mode...

Operational Performance:

Distribution of Maximum Winds Per 120h Forecast Period
2006-2008 Atlantic Seasons
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Source: Bender et al., Science 2010.

Control climatology of Intensities:

Simulated distributions of maximum wind

speeds, downscaling from NCEP Reanalysis
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North Atlantic ( 1980-2006 ) - Cat 4 & 5 Hurricanes
OBS

TS

HR1
HR2
HR3
HR4
HRS
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control (gfdl downscaling)

260 270 280 290 300 310 320 330 340 350 360

Note: GFDL hurricane model downscaling runs (U.S. Navy version) are limited to 5-day duration.

Source: Bender et al., Science, 2010.
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Distributions (CDF’s) of
Atlantic tropical cyclone
intensities (1980-2006).

Red: 1980-1994 (inactive)
Blue: 1995-2006 (active)

GFDL Hurricane Model
intensity distribution is
also shifted to higher
intensities in active years,
but the difference is
smaller than observed.

Source: Bender et al., Science, 2010.



In a warmer cl

imate (late 21st century A1B scenario) the hurricane model 66

simulates an expanded distribution of Atlantic hurricane intensities.

no. of occurences
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Tropical Storms
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Hurricane Counts by
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Tropical storms
and hurricanes
consistently
decrease in
number in the
warmer climate,
but...
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...the rarer most
intense simulated
hurricanes occur up to
3 times as often in the
warmer climate, and
increased for 3 of 4
individual models
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SUMMARY OF PROJECTED CHANGE

Cat 4+5 frequency:
Projected Changes in Atlantic Hurricane Frequency over 21st Century 81% increase, or
10% per decade
125
o
o
>
€ 75 _ _
Y Estimated net impact
@ of these changes on
N I
5 25 damage potential:
S +28%
(@)]
5 -25 —J‘
<
|\
N .

Trop. Storm+ Cat.2+3 Cat.4+5
Cat. 1 Hurr. Hurricane Hurricane

* Colored bars show changes for the18 model CMIP3 ensemble (27 seasons); dots
show range of changes across 4 individual CMIP models (13 seasons).

Source: Bender et al., Science, 2010.



The 50 km grid GFDL HIRAM global model is not systematically 79
under-predicting historical trends in hurricane counts

Southwest Pacific  corr=0.28

[l model (com=0.28)]
-o-0OBS

number of hurricanes
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Hurricane counts for each basin
are normalized by a
time-independent

multiplicative factor

number of hurricanes

1985 1990 1995 2000 2005
r

corr=0.52  West Pacific
. Correlations of model and

observed counts are

insignificant for the Indian

Ocean basins (not shown).

number of hurricanes

T s e mm s red: observations
blue: HIRAM ensemble mean

Source: adapted from Zhao, Held, Lin, and Vecchi (J. Climate, 2009)



Statistical-Dynamical Downscaling: Simulating Past PDI Variations
Model hindcast (red) uses NCEP Reanalysis. Best track is blue.

Atlantic Eastern North Pacific
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Tropical tropospheric temperature variability and trends (1979-1999):
Vertical profiles for models and observations

Interannual Variability Profile Trend (1979-1999) Profile
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Statistical projections of 21st century Atlantic hurricane activity
have a large dependence on the predictor used.

% Change in Power Dissipation Index (relative to 1981-2000)

% Change in Power Dissipation Index (relative to 1981-2000)

Percent Change in Atlantic Tropical Cyclone Power Dissipation Index: Observed and Projected

Relative to 1981-2000 average:2.13x10"' m’s”

oo b b e Do b |

500 - Based on Absolute SST

400

300

| Annual Observed PDI (1946-2007)
_| e Five-year Observed PDI (1946-2007)
—| == Five-year PDI based on observed absolute SST (1946-2007);r = 0.79

: Statistical Five-year PDI downscaling of global climate models (1946-2100)
Individual model Average of 24 models

*

/ " o

| °
High-resolution

model projections (see caption)

Past I Future

vl b b e e b s a|

~-100

1960 1980 2000 2020 2040 2060 2080 2100

“|Based on Relative SST

Annual Observed PDI (1946-2007)

_| w— Five-year Observed PDI (1946-2007)

—| === Five-year PDI based on observed relative SST (1946-2007); r = 0.79

: Statistical Five-year PDI downscaling of global climate models (1946-2100)
4 Individual model === Average of 24 models

High-resolution
model projections [~
(see caption)

~ 500

T
1960 1980 2000 2020 2040 2060 2080 2100

-100

Projection 1: Absolute SST

~300% projected increase in
Power Dissipation

Indirect attribution:
CO2 - SST - Hurricanes

Projection 2: Relative SST

* Projected change:
sign uncertain, +/- 80%

e No Attribution

« Damage potential: +28%
(from Bender et al. Science paper)

Source:
Vecchi et al. Science (2008)
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Pressure Level (hPa)

Pressure Level (hPa)

(a) 1982-2007 Trend in Tropical Mean Air Temperature
per Unit Tropical SST Trend (K/K)
|

1 1 1 1 1

400 —

600 —{

800 —

1000

7 \'\

T T T T T

Air Temp Trend/SST Trend (K/K)

(b) 1982-2007 Trend in Tropical Atlantic Air Temperature
per Unit TroE)icaI Atla?tic SST Tlrend (K/ﬁ)

T
-12.0 -8.0 -4.0 0.0

800 —

1000 T T T T T

-6.0 -4.0 -2.0 0.0
Air Temp Trend/SST Trend (K/K)

Legend:

—— NCEP Reanalysis 1

—— HadISST-forced AGCM Ens. Mean
HadISST-forced AGCM Ens. Member

———NCEP Reanalysis 1 with HadISST Adjustment (see text)
ERSST-forced AGCM Ens. Mean
ERSST-forced AGCM Ens. Member

Tropical-mean lapse rate
trends are very different in the
GFDL HIRAM climate model
than in NCEP reanalysis (the
latter indicating much more
destabilization or increasing
potential intensity).

In the tropical Atlantic
(1982-2007), NCEP
Reanalysis and GFDL HIRAM
trends are closer in the
troposphere, but quite
distinct in the tropopause
transition layer near 100mb.
Substituting HIRAM’s zonal
mean temperatures mostly
reconciles these differences.
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Source: G. Vecchi, manuscript in preparation, 2011.



Future Work:
Extension of Atlantic runs through 2007-2008 reveals increasingly
unrealistic trend in Zetac model: Possible source: NCEP Reanalysis

Atlantic Hurricanes (1980-2008): Simulated vs. Observed

Correlation = 0.69; Linear trends: +0.27 storms/yr (model) and +0.12 storms/yr (o

Hurricanes (Aug. - Oct.)

number of hurricanes

T | T T T T | T T T T | T T T T | T T T T

| Bl Model Ensemble
@—@® Observed
| 1 1 | 1 1 1 I 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1
1980 1985 1990 1995 2000 2005
Year
North Atlantic
18 T

ed).
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Zetac Regional
Model
(SST + Reanalysis)

HIRAM 50km
global model
(SST only)



Tropical Atlantic SSTs, Tropical Storms, and U.S. Landfall Series 77
5-yr running mean; Normalized; Linear trends (dashed lines)
A ! I ' I ! I ! I ' I ! I

—— SSTs (ERSST2, HadISST, Kaplan)

3 —— Tropical Storms (Unadjusted) —
=== Tropical Storms (Base Case) L

U.S. Landfall. Trop. Storms/Hurr. f i

While the century-scale
trends in tropical
Atlantic series have
marked differences...

Standard Deviations

3 ! I I ! I I
1880 1900 1920 1940 1960 1980 2000

Tropical Atlantic SSTs, Trop. Storms and Landfall Series: Detrended

5-yr running mean; Normalized

| | ...the multi-decadal

‘ ‘ variability (with trend
removed) is fairly
consistent among the
series.

Standard Deviations

3 1 1 1 1 1 1
1880 1900 1920 1940 1960 1980 2000
Year

Source: Adapted from Vecchi and Knutson, J. Climate, 2008



TEMPERATURE ANOMALY ( “C)

Statistical modeling of tropical Atlantic SSTs
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What type of SST “anthropogenic signal” should we look for in the tropical Atlantic?

Tropical Atlantic (Main Development Region) - Anthropogenic Forcing Only

0.8

5-yr running mean Sfc Temp; Aug-October avgs; CM2.0 and CM2.1 1881-1920 ref. period

=== HadCRUT2v observed i
---- Individual ensemble members |
== Model Ensemble Mean (n=4) ;'

— Linear trend of model ensemble ) J‘,.‘

V1 I | I | | | | | I | I |

1880 1900 1920 1940 1960 1980 2000

Tropical Atlantic (Main Development Region) All Forcing Expts
5-yr running mean Sfc Temps; Aug-October avgs; CM2.0 and CM2.1; 1881-1920 ref. period

=== HadCRUT2v (Observed) . i

---- Individual Ensemble Members i "
= Ensemble Mean (n=8)

11

Anthropogenic forcing:
Linear trend-like, but the
caveat of no indirect
aerosol forcing yet.

Natural + Anthropogenic forcing:
Volcanic/solar/anthropogenic forcing

gives a closer fit to observations ...
Residual (blue — black) = AMO??

1880 1900 1920 1940 1960 1980 2000

Year

Thu Jan 17 11:29:48 2008

Sources: Vecchi and Knutson, J. Climate, 2008. See also
Knutson et al. J. Climate, 2006



Fitting Atlantlc (MDR) SST changes W|th climate model aII-forcmg runs

0.6 _"'"':';'7‘FUF '(“f? N l" “MRIT 'i" i ;" T
C i— GISS F- i NCAR q‘(‘ng i i i ]
0.4}-- ---t===GISS.. EJ SLrm= NCARLPCM LT
: = =Model z\vo age E— Obs. : i i i . ]
- | | | | ey
0.2 . N , N\ Ny T -
S 0.0[rgrr = | ]
“02[ S [
0 e A e e
1860 1880 1900 1920 1940 1960 1980 2000
year

Estimated contribution of internal variability to Atlantic (MDR) SST changes

Ub i i T T T H T
- ; { — GFDL_CMP_1
N | { — GISS_E_H|

0.4 4T OIS E, R

MRI
NEAR_CCSM3
—N*AR PCM1_ ]

- —Mt‘dol Avomqo

I \/ | : |
—3,4 1 ! 1 1 1 i 1 1 1 i 1 1 i 1 1 i 1 1
90¢ 1920 1940 1960 1980
year

FIG. 6. Same as Fig. 5, but for MDR SST averaged over the 3-month hurricane season, August-October.

Source: Ting et al., J. Climate, 2009

2000

Left: Some model
analyses suggest that the
AMO may presently be
near a neutral state,
implying a possible further
increase in Atlantic
hurricane activity during
the next few decades.
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Internal Climate Variability vs Radiative Forcing: Detrended NH Mean Temperatures
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TNA Subsurface Temperature
(z=400m) Anomaly

r=-0.77

TNA SST Anomaly
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(b)

TNA Subsurface Temperature
z=400m) Anomaly

TNA'SST Anomaly

r=-0.26

MODEL_20C3M

1960 1970

1980 1990
Year

2000

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
Year

Model: Radiative forcing
and ocean circulation
changes both provide a
plausible explanation for
the fluctuations in 20t
century Northern
Hemisphere mean
temperature (detrended)

Model: Some tentative
evidence in support of a
significant role for ocean
circulation changes:
surface and sub-surface
fluctuations are out of
phase in observations and

modeled AMO-like change.

Regression: Model and
obs: Internal (AMO)
variability in GFDL model
is much more effective at
altering tropical Atlantic
windshear and potential
intensity than is
radiatively forced change.
So not sufficient to
compare size of natural
and anthropogenic SST
contributions alone.

Sources: Zhang, Delworth and Held (2006)
Zhang (2007) Zhang and Delworth (2009) GRL papers.




Tropical Cyclones Frequency Projections (Late 21 century) - Summary

TABLE SL
TC Frequency
Projections
Reference Model'type Resolution/. | Experiment Basin
Global NH SH NWPac. | NE N S SW
Pac Ind Ind Pac
Tropical Storm
Frequency Changes
(Go)
Sugi et al. 2002 MA T106 L21 10y -34 -28 -39 -66 -67 +9 -87 231
(ref 32) Timeslice (~120km) 1xCO2, 2xCO2
McDonald et al. 2005 HadAM3 NI44L30 15y IS935a -6 -3 -10 -30 +80 +42 +10 -18 I - d
(ref 50) Timeslice (~100km) 1979-1994 B u e e C re a S e
2082-2097
Hasegawa and Emonri CCSR/NIES/FRC | T106L56 5x20y at 1xCO2 -4
2005 (ref 51) GC timeslice (~120km) 7x20y at 2xCO2
Yoshimura et al. 2006 MA T106 L21 10y -18 —_1
(ref 52) Timeslice (~120km) | 1xCO2, 2xC02 R e d = INCrease
Oouchi et al 2006 MRIIMA TLO59L60 | 10y AlB -30 -28 -3z -38 -34 -82 -28 -43
(ref 10) Timeslice (~20km) 1982-1993
2080-2099
Chauvin et al. 2006 ARPEGE Climat ~50 km Downscale
(ref 31) Timeslice CNRM B2
Downscale
Hadley A2
Stowasser et al. 2007 IPRC Regional Downscale +19
(ref 53) NCAR CCSM2,
6xCO2
Bengtsson et al. 2007 ECHAMS T213 (~60 2071-2100, A1B -13 -20 - -26
(ref 13) timeslice km)
Bengtsson et al. 2007 ECHAMS T319 (~40 2071-2100, A1B -19 -28 +7 -51
(ref 13) timeslice km)
Emanuel et al. 2008 Statstical- .- Downsecale 7 -7 +2 -13 +6 -5 -7 -12 -15
(ref 11) deterministic CMIP3 mods.:
AlB, 2180-22
Average over 7
models
Enutson et al. 2008 GFDL Zetac 18km Downscale
(ref 12) regional CMIP3 ens. AlB,
2080-2100
Leclie et al 2007 OU-CGCM with Upto 30 2000 to 2050 ~0
(ref 54) high-res. window km control and IS92a
(6 members)
Gualdi et al. 2008 SINTEX-G T106 (~120 | 30yr 1xCO2, -16 (2x) -20 -3 -13 -14 22
(ref 28) coupled model km) 2xCO02, -44 (4x)
4xC02
Semmler et al 2008 Rossby Centre 28 km 16 yr control and
(ref 55) regional model A2, 2085-2100
Zhao et al 2009 GFDL HIRAM 50 km Downscale A1B:
(ref 29) timeslice CMIP3 =18 ens. | -20 14 a2 20 a5 |2 a0 | a2
GFDL CM2.1 -20 -14 -33 -5 -23 -3 -33 -31
HadCM3 -11 +5 -42 -12 +61 -2 -1 -42
ECHAMS -20 -17 -27 -82 +1& -25 -13 -48
Sugi et al. 2009 TMA/MRI global Dowmnscale A1B:
(ref 45) AGCM timeslice 20km MRICGCM23 -29 -31 -27 -36 -39 -39 -28 -22
20km MRICGCM23 -28 -28 -28 -20 -30 -20 28 -27
20 km MIROC-H -27 -18 -42 +2 -80 +32 -24 -90
20km CMIP3 n=18 ens. -20 221 -19 -26 28 -15 -5 -42
60 km MRICGCM23 -20 221 -17 -36 -31 -12 222 -8
60 km MIROC-H -6 0 -16 +64 -42 +70 +10 -69
60 km CMIP3 n=18 ens. -21 -10 -28 -14 -33 +33 -18 -36
-22 -20 - 3 -19 -7 222 +10
oot RO H - ! ! Source: Knutson et al. 2010




GFDL HIRAM (50-km grid global model) reproduces 83
Atlantic hurricane interannual variability and trend
(1981-2005) using observed SSTs alone

18

16

corr=0.83

103}

humber of hurricanes

-
-------

8
6
P i -
2
0

\ | \ \
1985 1990 1995 20 2005

red: observations
blue: HIRAM ensemble mean

Hurricane counts are normalized by a time-
independent multiplicative factor
Source: Zhao, Held, Lin, and Vecchi (J.. Climate, 2009)




Predicting hurricane activity a season ahead or more...

Simply persisting SST anomalies from June, the GFDL HIRAM model retains
skill for its forecast of the Atlantic hurricane season

5-member ensemble
hindcasts of hurricane
counts for each year
during 1982-2007

Source: Ming Zhao, GFDL/NOAA

number of hurricanes

number of hurricanes

20 N. Atlantic 1982-2007 (July-Dec)
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20
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HIRAM 50 km grid
model TC correlations
for several basins

red: observations
blue: HIRAM ensemble mean

Hurricane counts for each basin
are normalized by a
time-independent

multiplicative factor

Correlation for the South
Pacific is ~0.3 and insignificant
for the Indian Ocean

Source: Zhao, Held, Lin, and Vecchi (J. Climate, 2009
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In basins where the HIRAM 50km grid model has low correlation with
observations, the correlation of individual model runs with other
ensemble members is also low (implying little predictable signal).
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HIRAM 50-km grid model:

number of hurricanes number of hurricanes

hurricane number

Source: Zhao, Held, Lin

North Atlantic

=8=-=0BS
== MOD
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East Pacific

2 4 6 8 10 12

West Pacific

2 4 6 8 10 12
month

, and Vecchi (J. Climate, 2009)

realistic seasonal cycles of TCs

North Indian
2 ; ,
1.5}
11
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) South Indian

2 4 6 8 10 12

South Pacific
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fractional change

88

Change of hurricane frequency:
GFDL HIRAM (50 km grid); Late 21st Century Projection

North Atlantic

L [ Reynolds‘
‘ o HadiSST

S
()] o
fractional change

ENSEIMBLE CM21 HADCM3 ECHAM5

Source: Zhao, Held, Lin, and Vecchi (J. Climate, 2009)
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The HIRAM 50-km grid model simulated hurricane count
changes (interannual and A1B scenario) are consistent with
expectation based on tropical Atlantic SST minus global
tropical mean SST (Ta -Tg).

15,
0 CNTL(R)

0 CM21(R)

O HADCMS3(R) *
ECHAMS(R)

10- O CNTL(H)
ENSEMBLE(H)

O CM21(H)

O HADCM3(H)
ECHAMS(H) *

* AMIP-AVG xr

SF * AMIP-annuals

annual hurricane count

Ta-Tg (K)

Source: Zhao, Held, Lin, and Vecchi (J. Climate, 2009)
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The HIRAM 50-km grid model hurricane count changes
(interannual and A1B scenario) are consistent with expectation
based on tropical Atlantic vertical wind shear anomalies
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ASO wind shear anomaly (ms™)

Source: Zhao, Held, Lin, and Vecchi (J. Climate, 2009)



Cumulative Distribution Functions of Atlantic TC Intensities (1980-2006). 91
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Source: Bender et al., submitted, 2009

CDF Difference:
1995-2006 era minus
1980-1994 era.

Hurricanes are more
intense on average in the
active era.

For this set of active/
inactive years the
hurricane model intensity
IS less sensitive than
observed.




The HIRAM 50-km grid model hurricane count changes
(interannual and A1B scenario) are consistent with expectation
based on tropical Atlantic vertical wind shear anomalies
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Source: Zhao, Held, Lin, and Vecchi (J. Climate, in press)
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Sample hurricane from the Zetac 18-km grid model
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Source: Knutson et al., Bull. Amer. Meteor. Soc, 2007 .



Why did the number of storms decrease in the climate change runs?

94
Model Storms by Ensemble
20 T T T T T T T
Consider first the 1980-2006 trend:

15_ ................................................................................................................................................................................ . Ye”OW
o a Tropical
3 T Profile All Fields storms
o 10_ ................................................. L b _
E
S
) I I

5L I ......... 1 Y] | 11— | Red:
i Hurricanes
1980 1993C 2006 1980 1993C 2006

a) Changing the mean atmospheric temperature profile alone reproduces
a substantial part (~half) of the trend over the 1980-2006 period.

Source: Garner, Held, Knutson, and Sirutis, J. Climate, in press.



95
Why did the number of storms decrease in the climate change runs?

Warming Scenario

20 T T .
Consider next the climate warming induced changes:
T Only All Fields .

I SO oetoies AN | YeIIO_w.
. I Tropical
o storms
o 10_ ...... .. .. BN T oD . . . . —

5 L
L
S
D
+ AEEN i 1] e iy 1] =
Red:
Hurricanes
0 1995 C 1995 A1B 1995 A1B
Ensembles

b) Changing the temperature profile alone reproduces only a small
change compared to that produced by all fields. Therefore, we infer that
circulation changes (e.g., shear) are probably the dominant contributor to
the climate warming-induced reduction of storm count.

Source: Garner, Held, Knutson, and Sirutis, J. Climate, in press.
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MDR SST
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Atlantic hurricane activity (PDI)
is correlated with local Atlantic
SST (top) and with Atlantic
SST relative to tropical mean
SST (bottom).

These two SST measures
behave very differently in
greenhouse warming
scenarios. Local Atlantic SST
warms strongly, but Atlantic
SST relative to tropical mean
SST does not.

Source: Swanson, G-cubed, 2008



Unadjusted tropical storm counts have significant trends
since 1900 and since 1878

Hurricanes, Tropical, and Subtropical Storms

Source: Vecchi and Knutson , J. Climate, 2008.
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1980 2000

1960

Why examine linear trends?
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Other evidence for inhomogeneities...tropical depression fraction

1880. 1900. 1920. 1940. 1960. 1980. 2000.
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Cumulative Probability
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(a) Atlantic HURDAT Storms (Adjusted for Estimated Missing Storms) 1878-2006

1 8]80 | 1 QIOO | 1 9‘20 ‘ 1 9|40 1 SIGO | 1 QIBO |

28 - Linear Trends: Adjusted Annual Storm count (add.)

N +1.60 stormslcentury (1 878-2006) Adjusted Five-year storm count (add.)

Our Additive Adjustment
+
4.39 storms/century Our Multiplicative Adjustment

95% Method Uncertainty on
. Adjusted Storm Count

20|00

24 —

i Trend from 1878-2006: Not significant
(p=0.05, 2-sided tests, computed p-val
~0.2)

Trend from 1900-2006: [s significant at
- p=0.05 level

Hurricanes, Tropical, and Subtropical Storms

(b) “Missing storm”adjustments to HURDAT Tropical and Subtropical Storm Counts (1878-2006)
g1 L 1 1 1 I I I 1 1 I I I

= (Chang and Guo (2007) Adjustment
- —— Landsea (2007) Adjustment ~

= Mann and Sabbatelli (2007) .

Adjustment (central estimate) Oth e r eStI I I I ates Of
6 — = Our Additive Adjustment ~
==+ Our Multiplicative Adjustment

v S missing Atlantic tropical
storms...

Number of Storms “missing” per year

1880 1900 1920 1940 1960 1980 2000

Source: Vecchi and Knutson, J. Climate, 2008.



Tropical storm occurrence has apparently decreased in the Gulf of
Mexico and Caribbean...Increases are mostly located in the open

Atlantic and off the U.S. East Coast (in original, unadjusted data)...

HURDAT Storm Track Density Linear Trend 1878-2006
1 ]

1 1 1

40°N

o 4| (@) Records with Wind > Gale, Undajusted HURDAT _ I(b) Records with Wind > Gale, Sampling-Adjusted Track Data
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(Storm-Days per 2.5°x2.5° Cell per Year) per Century

Source: Vecchi and Knutson, J. Climate, accepted for publication.
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Tropical Storm Duration Issues

(b) Annual Tropical Storm-Days in North Atlantic (effect of adjustment)

(@) Annual Tropical Storm-Days in North Atlantic (from unadjusted HURDAT)
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(c) Average Tropical Storm Duration in North Atlantic (from unadjusted HURDAT)
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Storms per Century
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1878-2008 linear trend in Atlantic tropical storm counts
HURDAT “long” storms

VK08 “long”storms

—— HURDAT “short” storms
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Source: CCSP 3.3 Report

Atlantic Basin Hurricane Counts (1851-2006)

5-year running means
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Power Dissipation Index
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Landfalling storms: U.S. landfalling PDI shows no clear
long-term trend since 1900...
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(a) Tropical Atlantic SSTs, Tropical Storms, and U.S. Landfall Series
5-yr running mean; Normalized

4 I ! I J I ! I ! I ! I ! I

—— SSTs (ERSST2, HadISST, Kaplan)
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(b) Tropical Atlantic SSTs, Trop. Storms and Landfall Series: Detrended

5-yr running mean; Normalized

Standard Deviations
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Atlantic Major Hurricane counts (basin-wide) since the
mid-1940s: no long-term trend

mmm Major Hurricanes
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Source: Chris Landsea, NOAA/NHC
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Number of Cat 4+5 Atlantic Hurricanes
With Emanuel Adjustment for Early Storm Intensities
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) Decreasing confidence in data
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Source: Bender et al., submitted, 2009.
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Zetac model hurricanes have a fairly realistic warm core structure

Observed composite temperature Model hurricane composite temperature
anomaly for steady-state typhoon anomaly and wind speed:
(Eraqk 1|977|)
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Influence of pronounced greenhouse warming on distribution

of hurricane occurrence:

Tropical Storm Formation Tropical Storm Occurrence

—AFE ¢

Hurricane Occurrence

Some biases in
hurricane occurrence
may distort climate
change projection
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Climate Model Dependence?

Rather than an average climate change
perturbation derived from multiple models,
consider the change from individual CMIP3
models separately.

— For each model, use linear trend analysis to
extract the A1B scenario 215t century climate
change perturbation field.

— Models include GFDL CM2.1, MPI, MR,
HadCM3 (so far).

— Selection of models attempts to capture
extremes of the distribution of model
responses.
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Tropical Storm Tracks (1981-2005): HIRAM 50km Grid Model vs Observed

observed tracks (1981-2005)
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300 350
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Source: Zhao et al. J. Climate, in press (2009)



1981-2005 trend of annual hurricane couts
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Trends in hurricane counts (1981-20095) are fairly realistic
in HIRAM 50 km grid model (within range of the model
ensemble) in most basins.

IBTrACS observations
normalized model single ensemble
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Hurricane models project increasing hurricane
intensities and rainfall rates with climate warming...

...but probably not detectable at present.

Hurricane Intensity
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Sensitivity: ~12% increase in near-storm
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Sources: Knutson and Tuleya, J. Climate, 2004 (left); Knutson and Tuleya (2008) Cambridge Univ Press (right).
See also Bengtsson et al. (Tellus 2007) and Oouchi et (J. Meteor. Soc. Japan, 2006); Walsh et al. (2004) Stowasser et al. (2007).



fractional change

fractional change

116

Fractional change of hurricane frequency - indiv. basins

(a) E. Pacific
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Source: Zhao, Held, Lin, and Vecchi (J. Climate, in press)
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(d) N. Hemisphere
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Zetac Model Characteristics

117

1/6 degree (18 km) grid; 45 vertical levels

Non-hydrostatic

Resolved convection or Relaxed Arakawa-Schubert convection
Lin Microphysics

Mellor-Yamada boundary layer formulation

Atlantic Basin domain (105W-10E; 10S-45N)

Boundary forcing: Observed SSTs + NCEP 4x daily Reanalyses

Large-scale (waves 0-2) interior spectral nudging of all variables toward
Reanalysis with a timescale of 36 hours (48 hours in Model1).

Interactive land model (with spun-up initial condition based on reanalysis
forcing

Time step: 30 sec

CPU requirements: ~300 CPU hr / simulated day (Altix — 90 CPUs) or
750,000 CPU hours for 27 three-month seasons.

Typically Aug 1 — Oct 31 simulations (+ 3-day spin-up)
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a)

100°log(A1B/CTR)

c)

100*log(A1B/CTR)
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Alternative Downscaling Approach: Emanuel et al. (2008)
Emanuel “Obs.” Last 25 yr: +250% (Atl.)

+47% (global)

Change in Power Dissipation
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...with some selected rough comparisons to other modeling studies
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The GFDL hurricane model projects a large fractional increase in the 120
occurrence of very intense Atlantic hurricanes in a warmer climate.

N

Change in Cyclone Counts (#/year)

250%

200%

150%

100%

50%

0%

-50%

Fractional Change in Cyclone Counts

-100%

Change in Counts

TS-Cat.5

Percent Change

TS-Cat.5

Cat.1-5

B S e

Cat.1-5

_lh

Cat.3-5 Cat.4-5 Upae>65ms™!

Cat.3-5 Cat.4-5 U a>65ms!

Source: Bender et al., submitted, 2009

* All cases are downscaled
from the Zetac regional
model into the GFDL
hurricane model, which can
simulate hurricanes up to
category 5 intensity.

* Colored bars show
changes for 18 CMIP3 model
ensemble; whiskers show
range of changes across 4
individual CMIP models and
the ensemble.




Future Work:
Extension of Atlantic runs through 2007-2008 reveals increasingly
unrealistic trend in Zetac model: Possible source: NCEP Reanalysis

Atlantic Hurricanes (1980-2008): Simulated vs. Observed

Correlation = 0.69; Linear trends: +0.27 storms/yr (model) and +0.12 storms/yr (o
T | T T T T | T T T T | T T T T | T T T T

Hurricanes (Aug. - Oct.)

number of hurricanes

ed).

| Bl Model Ensemble
@—@® Observed
| 1 1 | 1 1 1 I 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1
1980 1985 1990 1995 2000 2005
Year
North Atlantic
18 T
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Zetac Regional
Model
(SST + Reanalysis)

HIRAM 50km
global model
(SST only)
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Fraction of random resamples with significant trends
t-test, 1-sided, p=0.05; 0.0125 storms/yr trend added on.

0.21= — 1944-2008 minus 4th order polynomial (resampled)
— 1944-2008 data (resampled)
0
0 20 40 60 80 100 120 140 160

Series length (years)
Source: Bender et al., submitted, 2009.
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Conclusions: 123

It is premature to conclude that human activity--and particularly

1.

greenhouse warming--has already had a detectable impact on
tropical cyclone activity.

Atlantic tropical storm and hurricane counts--after adjustment for
estimated missing storms--do not show significant increasing trends
since the late 1800s.

The main contributors to positive tropical storm trends are: i)
storms far from US landfall regions (US landfalls have not increased)
and/or ii) storms of relatively brief recorded duration (e.g., < 2 days).

Latest model projection: cat 4-5 Atlantic hurricanes may increase by
9%I/decade (A1B scenario; 18-model ensemble) with also 3 of 4
individual models tested so far showing an increase. However, this
change may not be detectable for many decades due to high noise
levels.

Some evidence for increasing intensities of strongest observed
storms (particularly in Atlantic), but the short records (26 yr) and
climate model limitations (e.g., indirect aerosols) preclude a
confident attribution of different influencing factors at this time.

Caveats: Assumptions in ‘missing storm’ estimates need further
examination; remaining data and modeling uncertainties.
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Frequency
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(a) Tropical Storms
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(b) Hurricanes
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(c) Major Hurricanes
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Change in Seasonal Count (A1B Scenario minus Control)
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Projected changes in Atlantic
hurricane/tropical storm numbers:

Late 21st century; Zetac regional model
downscaling of CMIP3 multi-model
ensemble climate change signal.

Note: U.S. Landfalling hurricanes: -30%

What about even
stronger storms??

Source: Knutson et al., 2008, Nature Geoscience.



Simulated tropical cyclone (>33 m/s) counts are better correlated with
observed counts in the eastern part of the SW Pac basin the Australia region.

15

==-model (Icorr=0.41)
=-0BS

SW Pacific Basin
(East of 168E)
r=0.41

[y
(=]
T

number of hurricanes

2010

15

=-0BS

Australia Region
(105E-168E)
r=0.28

number of hurricanes

1 I 1 I 1
1985 1990 1995 2000 2005 2010

year 125



126
Control Run: Skill in simulating Cat 4-5 numbers?

North_Atlantic (ASO)

Cat 4 & 5 Hurricanes (wind criterion)

=)

Unlike Zetac,

The GFDL hurricane
model downscaling has
some hindcast sKkill at
simulating interannual
variations of Cat 4-5
hurricane counts (with

0 = .
1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 low bias overall).

vear

no. hurricanes
wow & o,

[

North_Atlantic (ASO)

Fraction of Storms Reaching Cat 4 & 5 (wind criterion)

0.6 ...although this ‘skill’

0.5 r=0.16 arises mainly from the
total storm count, not an
ability to hindcast the
fraction of storms
achieving Cat 4-5 each
year...

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006
year

® obs
® atl NCEP.N2
® atl_ NCEP.N2/GFDL

Source: Bender et al., Science, 2010.



