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Core science question: understanding the 
factors behind the 2010 Russian heatwave 

  First, clarify the question: 
–  "They used to say we're changing the odds, we're loading 

the dice that make it more likely that we'll get extreme 
weather events. Now the change is we're not only loading 
the dice, we're painting more dots on the dice. We're not 
only rolling more 12s, we're rolling 13s and 14s and soon 
15s and 16s.” (Al Gore, September 2011) 

  Q1: “Could this event have occurred in the absence 
of human influence on climate?” 

  Q2: “How much has human influence on climate 
increased the odds of this event occurring?” 
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The 2010 Russian heatwave in geopotential and 
surface temperature (from Dole et al, GRL, 2011) 
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Competing interpretations of attribution 

  From the abstract of Dole et al, 2011: 
–  “…such an intense event could be produced through 

natural variability alone. … similar atmospheric patterns 
have occurred with prior heat waves in this region. We 
conclude that the intense 2010 Russian heat wave was 
mainly due to natural internal atmospheric variability.” 

  These statements are not incompatible with: 
–  The global temperature trend over the past 50 years, most of 

which is attributable to human influence, substantially 
increased the risk of a heat-wave of this magnitude. 
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GJ van Oldenborgh: Western Russia JJA 
temperatures regressed onto global mean ΔT 

  Regression model:  
         monthly regional ΔT = β x global mean ΔT + noise 
  Significant in all months except July, with stronger 

regional temperature changes in winter. 
  Stronger relationship over 1950-2009 period. 
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Change in return-time of 2010 temperatures 
associated with 1950-2009 global trends 

  Return-time of 2010 
event versus mean 
climate 1949-2009 

  Return-time after 
subtracting component 
varying with global ΔT 

Figure 1: Regression of local temperature on global mean temperature (GISS) in July. Areas
with p < 0.1 are denoted with lighter colours.

Figure 2: Return time of the July 2010 temperatures in the context of the PDF of the tem-
peratures in 1948–2009 assuming a stationary distribution (left) and adjusting for a trend
linearly proportional to the global mean temperature (right).
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What does modelling tell us? Results from 
weatherathome.net 

  Dole et al noted one of a 
50-member ensemble 
was 2010-like. 

  Need larger ensembles, 
since the event was 
unpredictable. 

  Run prescribed-SST 
simulations 1950-2010. 

  Repeat with estimated 
pattern of human 
influence removed 

  Large ensembles, short 
runs, perfect for 
distributed computing. 

  See Cameron Rye’s 
poster. 
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Pattern of geopotential height associated with 
July Western Russian temperatures 

  ERA-interim 
1979-2010 

  HadAM3P-N96 
ensemble Regression map of western Russian temperatures with z!anomalies era interim 1979!2010
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Temperature anomalies versus amplitude of 
geopotential height pattern – uncorrected 
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Temperature anomalies versus amplitude of 
geopotential height pattern – bias corrected 
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Preliminary results: change in return-time of 
heat-wave-like events, 1960s-2000s 
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Preliminary results: change in return-time of 
heat-wave-like events, 1960s-2010 
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Conclusions 

  Empirical analysis, supported by large-ensemble 
simulation using weatherathome.net, suggests large-
scale temperature changes since 1950 have 
increased the risk of a 2010-like Russian heat-wave. 

  Most of the warming over the past 50 years is very 
likely attributable to human influence. 

  Specific conditions in 2010 are less important than 
the multi-decadal trend. 

  Still need to assess: 
–  Sensitivity to model physics & pattern of SST change. 
–  Possible countervailing regional anthropogenic influences. 
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So, are we disagreeing with Dole et al? 

  Not yet (these are only preliminary results). 
  Even if these results prove robust, this is not a 

fundamental disagreement. Dole et al note we are 
“on the cusp” of a rapid increase in risk. Large 
ensembles allow early detection. 

  Size of 2010 anomaly was substantially larger than 
estimated increase in 100-year-return-time events: 
So an event can be both  
–  “mostly natural” in terms of magnitude and 
–  “mostly anthropogenic” in terms of fraction attributable risk 
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Should we measure human contribution in terms 
of size of an event of a given return time? 

10
0

10
1

10
2

10
3

285

290

295

300

returntime

T
e

m
p

e
ra

tu
re

 e
q

u
iv

a
le

n
t

 

 

1960s

2000s

era interim 1979!2010



University of Oxford  

Should we measure human contribution in terms 
of size of an event of a given return time? 
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Or in terms of increased risk of an event of a 
given magnitude? 
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Evidence that thresholds matter: impact of 
droughts and heatwaves on Chinese wheat-yield 

  EQUIP project: end-to-end quantification of impact 
projections. Highlights importance of thresholds. 

Challinor et al,  
ERL, 2010 

Environ. Res. Lett. 5 (2010) 034012 A J Challinor et al

(a) (b)

Figure 3. The percentage of harvests failing under no adaptation as a function of increase in (a) global mean temperature (GMT) and (b) local
mean temperature (LMT), for the full 136-member ensemble of crop yield. The numbers in brackets indicate the number of data points (note
that the 6◦–8◦ bin has a low population compared to the other three bins). GMT increase is defined using Jan–Dec data referenced to the
average GMT over the full baseline period. LMT increase is defined using the crop growth cycle period and is referenced to the average LMT
over the full baseline period. Crop failure is defined as yields less than two standard deviations below the corresponding baseline mean. Each
box and whiskers shows the median, inter-quartile range and maximum and minimum values. The horizontal line shows the baseline failure
rate, which is the average of the failure rates in the four baseline simulations.

(a) (b)

Figure 4. The percentage of harvests failing under no adaptation (‘none’), with full adaptation to water stress (‘water’) and for three scenarios
of vulnerability index (min, mean and max—0.54, 0.97 and 1.51) for crop failure defined as yields less than (a) one and (b) two standard
deviations below the corresponding baseline mean. Each box and whiskers shows the median, inter-quartile range and maximum and
minimum values, calculated from the 136 projected 110-year time series of crop yield. The horizontal line shows the baseline failure rate,
which is the average of the failure rates in the four baseline simulations.

of the manner in which this may change over time as the
magnitude of climate change increases. In studies of the
impacts of climate change, and in key syntheses such as that
of the Intergovernmental Panel on Climate Change [35], mean
temperature can provide a convenient metric for the magnitude
of climate change, since it measures one of the causal factors
contributing to crop yield change. Figure 3 presents the
projected yields subsampled according to both global and local
mean temperature increase. In both of these cases, crop failure
becomes increasingly likely as mean temperatures rise. Both
the median and maximum crop failure rates increase with
temperature, with increases in the maximum failure rate being
greatest. This increase is due to heat stress during anthesis,
as can be seen by comparing figure 3 with supplementary
figure S1 (available at stacks.iop.org/ERL/5/034012/mmedia).
Thus, adaptation to heat stress becomes increasingly important
as mean temperature, and the associated number of extremes,
rise. Whilst there is no full consensus in the literature on the
response of crops to local mean temperature [13], this result
is consistent with the results of controlled environment and

field-scale studies [8, 36], as well as analyses of larger-scale
yields [17].

3.1.2. Socio-economic adaptation. The performance of
the VI analysis was assessed before proceeding with the
generation of scenarios from the vulnerability index model
(supplementary data section S3 available at stacks.iop.org/
ERL/5/034012/mmedia). The three scenarios from the VI
model are compared to the crop model results in figure 4.
For crop failures defined as one standard deviation below the
baseline mean, it is clear that some socio-economic adaptation
is possible, but that there is insufficient precision in the value
of VI to determine the extent—all that can be said is that
the degree of adaptation lies between very near the maximum
and near the minimum adaptation possible, as indicated by
the crop model. For two standard deviation crop failures,
however, there is strong potential for adaptation to extremes
of water stress, with very nearly all the biophysical potential
identified by the crop model simulations being realized in all
three of the VI scenarios. Since the time series of historical
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The importance of clarifying the question 

  A small anthropogenic contribution to the magnitude 
of an event can be consistent with a large 
contribution to the risk of exceeding a threshold.  

  Contribution to risk is most relevant if events are 
self-reinforcing & impacts are non-linear. 

  Important to avoid the question “could this event 
have occurred naturally?” – especially if it diverts 
attention to the early- or pre-instrumental record. 

  Could whoever is advising Gore to ask whether we 
are painting more dots on the dice please stop? 


