

Forcing, Feedbacks & Climate Sensitivity in CMIP5

Tim Andrews, Mark J. Webb, Jonathan M. Gregory & <u>Karl E. Taylor</u> OSC Conference – Oct 2011, Email: timothy.andrews@metoffice.gov.uk

© Crown copyright Met Office

Motivation: Climate sensitivity and CMIP5

Met Office

MULTI-MODEL AVERAGES AND ASSESSED RANGES FOR SURFACE WARMING

In CMIP5, we are also likely to have a range of projections, so we will need to explain why different models respond differently to the same external forcing

- Review Gregory's method for diagnosing "forcing" and global "climate sensitivity" and apply it to CMIP5 models
- To what extent do differences in "radiative forcing" and the strength of various feedbacks explain the spread in model responses?
- Resolve feedbacks into components: LW vs. SW; clear-sky vs. cloud effects
- Do feedbacks evolve in transient climate change experiments?

Current CMIP5 data (6th Oct)

arey certere				
	Abrupt4xCO2	piControl	CMIP3 generation ΔT_{23}	(
CanESM2	150yr	100s yr	3.4 K	
CNRM-CM5	150yr	100s yr	n/a	
CSIRO-Mk3-6-0	150yr	100s yr	3.1 K	Spanned
HadGEM2-ES	270yr (in house)	100s yr	4.4 K	CMIP3
INM-CM4	150yr	100s yr	2.1 K 🏒	sensitivity
IPSL-CM5A-LR	150yr	100s yr	4.4 K	range
MIROC5	150yr	100s yr	4.0 K	
MRI-CGCM3	150yr	100s yr	3.2 K	
NorESM1-M	150yr	100s yr	n/a	

• Data is now coming online regularly...

CMIP5 piControl & abrupt4xCO2

CanESM2 — Surface_air_temperature Surface_air_temperature (K) 29(Model Year inmcm4 - Surface_air_temperature

Model Year

How do we quantify model response?

Following Gregory et al. (2004), the energy balance of the climate system can be expressed by:

 $N = F - Y \Delta T$

How do we quantify model response?

Following Gregory et al. (2004), the energy balance of the climate system can be expressed by:

 $N = F - Y \Delta T$

© Crown copyright Met Office

In CMIP5, we will only be part way along this curve...

CMIP5 Models

(Wm⁻²)

flux

radiative

Ξ.

Change

flux (Wm⁻²)

radiative

.⊆

Change

flux (Wm⁻²)

radiative

Ξ.

Change

2

0

2

0

0

Equil. Climate sensitivity vs. the inverse of the feedback parameter

Equil. Climate sensitivity vs. the inverse of the feedback parameter

Equil. Climate sensitivity vs. the inverse of the feedback parameter

SW Clear-sky

Cloud Radiative Effect

Cloud Radiative Effect

Cloud response in a 270yr 4xCO₂ HadGEM2-ES simulation

Differences in cloud feedback continue to be the largest (but not the only) source of uncertainty in feedbacks (range from –0.5 Wm⁻² K⁻¹ to +0.7 Wm⁻² K⁻¹)

© Crown copyright Met Office

- For the first time, Gregory method applied to a multi-model ensemble of coupled atmosphere-ocean models
- Preliminary results show that the range of equilibrium climate sensitivity has not decreased and that differences in cloud feedback, once again, appear to be a large source of this uncertainty.
- There are limitations on the methods used when applied to models with full oceans. Estimating both forcing and equilibrium climate change become more difficult.
- These systems are perhaps better characterized by a time-evolving feedback parameter.
- Future work:
 - More models
 - Analysis of 12-member 5-year ensembles
 - Comparison of forcing estimates with those derived using the fixed-SST method
 - More complete analysis of feedbacks

Strong negative SW clear-sky feedback under solar forcing from desertification of Australia kicking up dust

Not seen under CO₂ since physiological and fertilization effects prevent plants dying

© Crown copyright Met Office