Anthropogenic forcing and feedback of the Earth system

Jonathan Gregory^{1,2}, Tim Andrews², Olivier Boucher³, Bill Collins², Piers Forster⁴, Pierre Friedlingstein⁵, Peter Good², Chris Jones², Mark Webb² 1 NCAS-Climate, University of Reading, UK 2 Met Office Hadley Centre, Exeter, UK 3 LMD, Paris, France 4 University of Leeds, UK 5 University of Exeter, UK

Why do we care about global average SAT change (ΔT)?

- It has the longest instrumental record, with good signal/noise.
- It is a useful indicator of the magnitude of global climate change.

Why do we care about global average SAT change (ΔT)?

Climate sensitivity, forcing and feedback

Equilibrium climate sensitivity (ECS) measures the steady-state climate response for a particular forcing $(2 \times CO_2)$.

It is useful in predicting ΔT because of the separation of forcing and "feedback":

How should we define forcing and feedback?

Heat budget of the global climate system

N is the net heat flux into the climate system. In the unperturbed steady state N = F = 0and $\Delta T = 0$.

While the climate is changing, $N \neq 0$. In the perturbed steady state N = 0and $F = \alpha \Delta T$.

We can define *F* as equal to *N* in the presence of the forcing agent, but in the absence of climate change, so that N = F.

Experiments with fixed surface temperature

This technique **inhibits climate change**, so that *N* = *F*.

Forcing		stratosphere- adjusted		fixed SAT	
	ΔT	F	α	F	α
$2 \times CO_2$	1.9	3.8	2.0	4.3	2.3
Aerosol $\omega = 1.0$	-1.7	-4.6	2.7	-4.1	2.4
Aerosol ω = 0.8	2.9	1.6	0.7	6.8	2.3

Shine et al. (2003)

Experiments with fixed forcing agent

Uncertainty in ECS arises from forcing as well as feedback

Heat budget of the global climate system

Two alternative approximate models for N

$$N = C d\Delta T/dt$$

$$N = \kappa \Delta T$$

Heat budget of the global climate system

Comparing climate feedback and ocean heat uptake

 ΔT proportional to cumulative carbon emissions C_E

C4MIP results analysed by Matthews et al. (2009)

 ΔT proportional to cumulative carbon emissions C_E

Transient climate sensitivity to emissions (TCSE, K GtC⁻¹, carbon-climate response of Matthews et al.) is

Gregory et al. (2009)

Physical and carbon-cycle feedbacks in radiative terms

Non-linearity shown by AOGCMs under fixed forcing

Gregory et al. (2004), Williams et al. (2008)

Regard F(t) (e.g. 1% CO₂) as a succession of annual steps

Calculate the responses $\Delta T(t)$ to the individual steps

Add them up to get $\Delta T(t)$ for F(t)

Examples for other scenarios and quantities

Good et al. (2011)

Summary

 ΔT is useful as an indicator of the magnitude of global climate change. A framework of metrics has been developed to account for ΔT .

	Δ <i>T</i> metric	Forcing and feedback	Linear with many timescales	Non- linear
Fixed CO ₂	ECS	Adjusted <i>F</i> , α	Time-dependent response	
Time-dependent forcing	TCR/TCS	к	Combination of responses to steps	
CO ₂ emissions	TCSE	<i>C_E</i> , β, γ, etc.		
Other emissions and forcings		Arneth et al., Raes et al.		

Our practical interest is in regional change in many quantities.

Global average surface air temperature change ΔT

Why do we care about this quantity?

Why do we care about global average SAT change (ΔT)?

SAT change in SRES A2 2090-2099

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 (°C)

Calculate the responses $\Delta T(t)$ to the individual steps

Terrestrial feedbacks in radiative terms

 $W m^{-2} K^{-1}$

Arneth et al. (2010)