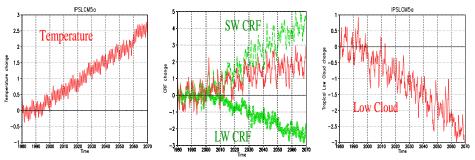
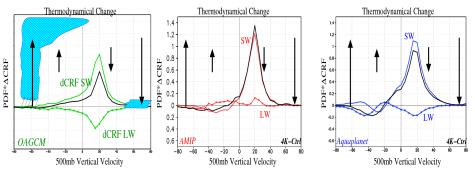
Interpretation of the positive low-cloud feedback predicted by the IPSLCM5A model : *An energetic analysis*

Florent Brient, Sandrine Bony


Laboratoire de Meteorologie Dynamique / IPSL (Paris, France)

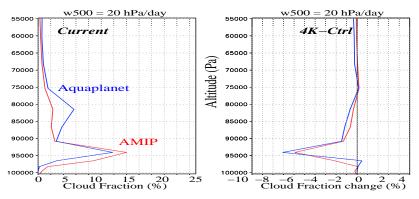
October, 27th 2011


ション ふゆ アメリア イロア しょうくしゃ

IPSL-CM5a Model

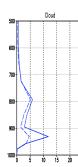
IPSLCM5a : +1pct CO₂ / year

- CO₂ increase : Equilibrium Climate Sensitivity of +4.4K (High sensitivity model)
- Tropical Cloud Radiative Forcing : ΔCRF SW gives the sign of ΔCRF Net (less negative, less cooling)
- Positive feedback associated to the tropical low cloud decrease
- ▶ Difficulty to understand the mechanisms involved in a coupled model → Using a model hierarchy of different configurations.

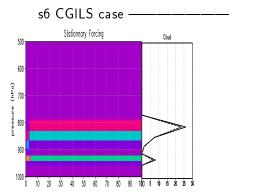


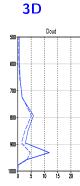
- Model Hierarchy with IPSLCM5A atmospheric physics
- Same response between coupled models and atmospheric models (idealized atmospheric circulations using w₅₀₀)
- Tropical ΔCRF controlled by ΔSWCRF in weak subsidence regimes (w₅₀₀=0-30hPa/day)

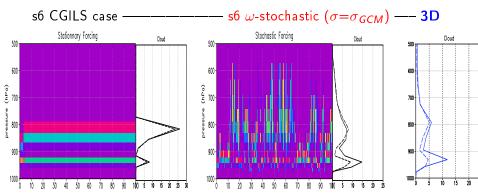
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つへぐ


What controls the SW CRF increase on this regime?

Zoom on weak subsidence regimes

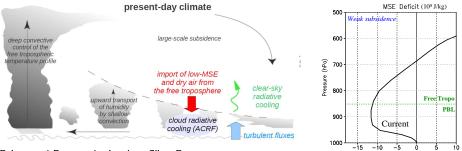

- Cloud profile on a weak subsidence area (w₅₀₀=20 hPa/day)
- Decrease of cloud fraction in the 950mb layer
- Responsible for the positive cloud feedback of IPSLCM5a model (amplified by the large statistical weight of this regime)
- May we reproduce the 3D behaviour using a SCM?


▲ □ ● ● ● ●


◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

3D

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ / 圖/ のへ(?)

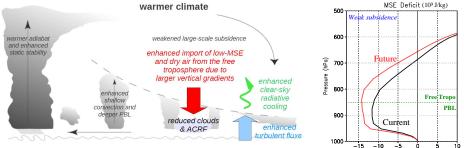


- SCM able to reproduce cloud profile both in present and future climate by adding a stochastic variability on large-scale vertical velocity
- Stochastic forcing allows a alternance of strong convective and subsidence states (characteristics of weak subsidence case)
- What processes control the low cloud decrease ?

- ► Test of the SCM cloud response over a range a different perturbation applied alone : → ΔSST, Δω, ΔCO₂...
- Strong influence of the change in the vertical atmospheric stratification in response to a given radiative perturbation
- Analysing the energy budget of the troposphere to understand this behaviour

ション ふゆ アメリア イロア しょうくしゃ

Positive Low Cloud feedback


Brient and Bony, submitted to Clim. Dyn.

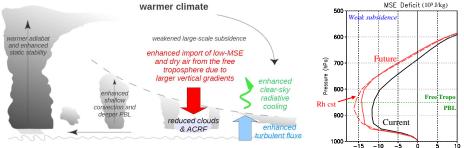
$$[ACRF] = -[R_0] - (LH + SH) + [\overrightarrow{V} \cdot \overrightarrow{\nabla} h] + [\omega \frac{\partial h}{\partial P}]$$

Energetic analysis of the **PBL MSE** budget on current climate (W/m^2)

- lncreased by surface turbulent fluxes (LH + SH)
- Decreased by clear-sky radiative cooling ([R₀]), Cloud radiative cooling ([ACRF]) and vertical advection of MSE ([-ω ∂h/∂P])

Positive Low Cloud feedback

Brient and Bony, submitted to Clim. Dyn.


$$\Delta[ACRF] = -\Delta[R_0] - \Delta(LH + SH) + \Delta[\overrightarrow{V}, \overrightarrow{\nabla}h] + \Delta[\omega \frac{\partial h}{\partial P}]$$

Change of energetic analysis for a **Future Climate** (W/m^2)

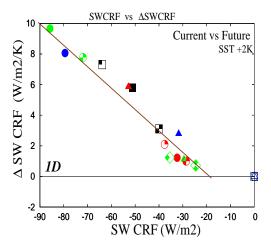
• Enhanced import of low-MSE into the PBL \rightarrow Reduced clouds

◆□▶ ◆□▶ ★∃▶ ★∃▶ = のQ@

Positive Low Cloud feedback

Brient and Bony, submitted to Clim. Dyn.

$$\Delta[ACRF] = -\Delta[R_0] - \Delta(LH + SH) + \Delta[\overrightarrow{V}, \overrightarrow{\nabla}h] + \Delta[\omega \frac{\partial h}{\partial P}]$$

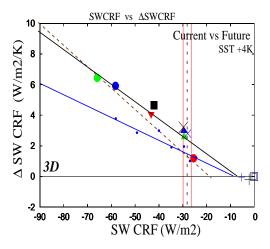

Change of energetic analysis for a **Future Climate** (W/m^2)

- Enhanced import of low-MSE into the PBL \rightarrow Reduced clouds
- At first order, due to Clausius-Clapeyron relationship : Δq(z) larger at higher temperature (surface) than at altitude

・ロト ・伊ト ・ヨト ・ヨト 三星

- Playing with uncertain model parameters ("tuning") mostly affecting low clouds to test GCM cloud feedback.
- Always Positive cloud feedback :

The larger the current cloud cooling, the larger the cloud sensitivity

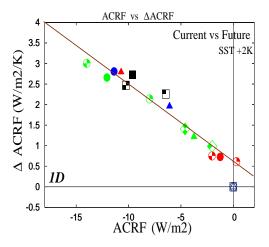


イロト イポト イヨト イヨト

- Playing with uncertain model parameters ("tuning") mostly affecting low clouds to test GCM cloud feedback.
- Always Positive cloud feedback :

The larger the current cloud cooling, the larger the cloud sensitivity

Both in 1D and 3D



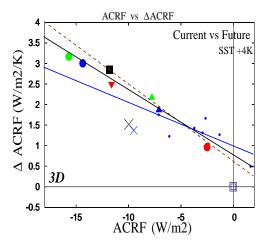
ヘロト ヘアト ヘヨト ヘ

- Playing with uncertain model parameters ("tuning") mostly affecting low clouds to test GCM cloud feedback.
- Always Positive cloud feedback :

The larger the current cloud cooling, the larger the cloud sensitivity

- Both in 1D and 3D
- ► Range of different △ACRF for a same perturbation → Why ?

ヘロト ヘ戸ト ヘヨト ヘ


 $\Delta[ACRF] = -\Delta[R_0] - \Delta(LH + SH) + \Delta[\overrightarrow{V}, \overrightarrow{\nabla}h] + \Delta[\omega \frac{\partial h}{\partial P}]$

. nac

- Playing with uncertain model parameters ("tuning") mostly affecting low clouds to test GCM cloud feedback.
- Always Positive cloud feedback :

The larger the current cloud cooling, the larger the cloud sensitivity

- Both in 1D and 3D
- ► Range of different △ACRF for a same perturbation → Why ?

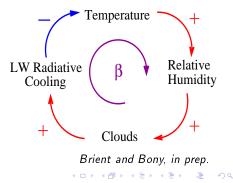
 $\Delta[ACRF] = -\Delta[R_0] - \Delta(LH + SH) + \Delta[\overrightarrow{V}, \overrightarrow{\nabla}h] + \Delta[\omega \frac{\partial h}{\partial P}]$

Physical Interpretation

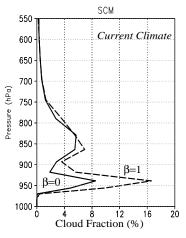
- Always Positive low cloud feedback
- In all cases : Mechanism previously described is at work (enhanced vertical advection of MSE)

 \implies Explains the positive sign of the feedback

 Magnitude of the positive feedback related to more local feedback mechanism

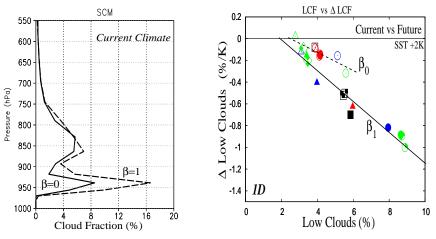

うつん 川川 スポット エリット ふしゃ

Physical Interpretation


- Always Positive low cloud feedback
- In all cases : Mechanism previously described is at work (enhanced vertical advection of MSE)

 \implies Explains the positive sign of the feedback

- Magnitude of the positive feedback related to more local feedback mechanism
- Local Feedback between cloud radiative effects and RH \implies Clouds contribute to their own maintenance (so-called β effect)
- May this explain the relationship current/future climate ?



Radiative feedback

- ► Test of this hypothesis by removing cloud radiative effets (β=0)
- \implies Less Clouds in the PBL

Radiative feedback

 Test of this hypothesis by removing cloud radiative effets (β=0)

3

▲ 同 ト → 国 ト

- \implies Less Clouds in the PBL
- \implies Weaker Cloud decrease in a future climate

Conclusions

In the IPSL-CM5A model :

- Positive low cloud feedback due to the decrease of the low cloud fraction over weak subsidence regimes
- Robust across a hierarchy of model configurations (OAGCM, AGCM, Aquaplanet, SCM)
- ► Low cloud decrease due to a enhanced advection of low-MSE from the free troposphere to the PBL → related to the robust Clausius-Clapeyron mechanism
- ► Magnitude related to local positive feedback between cloud radiative effects and relative humidity (β effect) ⇒ Interpretation of the relationship current climat cloudiness vs cloud response under a climate change

To do :

- Look at CMIP5 models (same mechanims at work?)
- Propose process-oriented observational tests (ex : Kubar et. al 11)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ うへぐ

Thank You

(ロ)、(型)、(E)、(E)、 E) のQで