Cryosphere radiative forcing and albedo feedback

Mark Flanner, Karen Shell, Michael Barlage, Don Perovich, and Mark Tschudi

> October 27, 2011 WCRP Open Science Conference

• A 1% change in Earth's planetary albedo exerts a "forcing" almost as large as a doubling of CO₂.

 A 1% change in Earth's planetary albedo exerts a "forcing" almost as large as a doubling of CO₂. Large capacity for albedo change from Earth's cryosphere

- A 1% change in Earth's planetary albedo exerts a "forcing" almost as large as a doubling of CO_2 . Large capacity for albedo change from Earth's cryosphere
- Questions:

- A 1% change in Earth's planetary albedo exerts a "forcing" almost as large as a doubling of CO₂. Large capacity for albedo change from Earth's cryosphere
- Questions:
 - What is the influence of the cryosphere on Earth's solar energy budget?

- A 1% change in Earth's planetary albedo exerts a "forcing" almost as large as a doubling of CO₂. Large capacity for albedo change from Earth's cryosphere
- Questions:
 - What is the influence of the cryosphere on Earth's solar energy budget?
 - What has been the radiative impact and associated albedo feedback of recent changes in seasonal snow cover and sea-ice?

- A 1% change in Earth's planetary albedo exerts a "forcing" almost as large as a doubling of CO₂. Large capacity for albedo change from Earth's cryosphere
- Questions:
 - What is the influence of the cryosphere on Earth's solar energy budget?
 - What has been the radiative impact and associated albedo feedback of recent changes in seasonal snow cover and sea-ice?
- We have 30 years of remote sensing observations from which to diagnose these quantities and the cryospheric contribution to Earth's climate sensitivity

 Cryosphere radiative forcing (CrRF): the instantaneous perturbation to Earth's TOA energy budget induced by the presence of surface cryospheric components.

• Cryosphere radiative forcing (CrRF): the instantaneous perturbation to Earth's TOA energy budget induced by the presence of surface cryospheric components. (Analogous to cloud radiative forcing).

- Cryosphere radiative forcing (CrRF): the instantaneous perturbation to Earth's TOA energy budget induced by the presence of surface cryospheric components. (Analogous to cloud radiative forcing).
- Time- (t) dependent CrRF within a region R of area A:

$$\operatorname{CrRF}(t,R) = \frac{1}{A(R)} \int_{R} S_{x}(t,r) \frac{\partial \alpha}{\partial S_{x}}(t,r) \frac{\partial F}{\partial \alpha}(t,r) dA(r) \quad [W \, m^{-2}]$$
(1)

- S_x : snow or sea-ice cover fraction
- α : surface albedo
- F: TOA net solar flux

- Cryosphere radiative forcing (CrRF): the instantaneous perturbation to Earth's TOA energy budget induced by the presence of surface cryospheric components. (Analogous to cloud radiative forcing).
- Time- (t) dependent CrRF within a region R of area A:

$$\operatorname{CrRF}(t,R) = \frac{1}{A(R)} \int_{R} S_{x}(t,r) \frac{\partial \alpha}{\partial S_{x}}(t,r) \frac{\partial F}{\partial \alpha}(t,r) dA(r) \quad [W \, m^{-2}]$$
(1)

- S_x : snow or sea-ice cover fraction
- α : surface albedo
- F: TOA net solar flux
- Contributions separated from:
 - Land snow and ice
 - Sea-ice

 S_{snow}: NOAA/Rutgers binary snow cover product (1979–2008), derived from AVHRR data (*Robinson and Frei*, 2000)

- S_{snow}: NOAA/Rutgers binary snow cover product (1979–2008), derived from AVHRR data (Robinson and Frei, 2000)
- S_{ice}: Sea-ice concentrations (1979–2008) derived from passive microwave sensing (Cavalieri et al., 2008, NSIDC)

- S_{snow}: NOAA/Rutgers binary snow cover product (1979–2008), derived from AVHRR data (Robinson and Frei, 2000)
- S_{ice}: Sea-ice concentrations (1979–2008) derived from passive microwave sensing (Cavalieri et al., 2008, NSIDC)
- $\Delta \alpha_{\rm snow}$: Snow-covered albedo: 2000–2008 MODIS surface albedo, filtered with NOAA/Rutgers binary snow cover

- S_{snow}: NOAA/Rutgers binary snow cover product (1979–2008), derived from AVHRR data (*Robinson and Frei*, 2000)
- S_{ice}: Sea-ice concentrations (1979–2008) derived from passive microwave sensing (Cavalieri et al., 2008, NSIDC)
- $\Delta \alpha_{\rm snow}$: Snow-covered albedo: 2000–2008 MODIS surface albedo, filtered with NOAA/Rutgers binary snow cover
- \bullet Minimum and maximum $\Delta\alpha_{\rm snow}$ products created using albedo variance by land-class

- S_{snow}: NOAA/Rutgers binary snow cover product (1979–2008), derived from AVHRR data (*Robinson and Frei*, 2000)
- S_{ice}: Sea-ice concentrations (1979–2008) derived from passive microwave sensing (Cavalieri et al., 2008, NSIDC)
- $\Delta \alpha_{\rm snow}$: Snow-covered albedo: 2000–2008 MODIS surface albedo, filtered with NOAA/Rutgers binary snow cover
- Minimum and maximum $\Delta \alpha_{\rm snow}$ products created using albedo variance by land-class
- Sea-ice and associated $\Delta\alpha_{\rm ice}$ partitioned into first-year and multi-year components (Fowler et al., 2004; Perovich et al., 2002; Tschudi et al., 2010)

- S_{snow}: NOAA/Rutgers binary snow cover product (1979–2008), derived from AVHRR data (*Robinson and Frei*, 2000)
- S_{ice}: Sea-ice concentrations (1979–2008) derived from passive microwave sensing (Cavalieri et al., 2008, NSIDC)
- $\Delta \alpha_{\rm snow}$: Snow-covered albedo: 2000–2008 MODIS surface albedo, filtered with NOAA/Rutgers binary snow cover
- Minimum and maximum $\Delta \alpha_{\rm snow}$ products created using albedo variance by land-class
- Sea-ice and associated $\Delta\alpha_{\rm ice}$ partitioned into first-year and multi-year components (Fowler et al., 2004; Perovich et al., 2002; Tschudi et al., 2010)
- $\partial F/\partial \alpha$: Radiative kernels derived from NCAR CAM3 and GFDL AM2 models (Shell et al., 2008; Soden et al., 2008), and radiative transfer modeling using global cloud products (ISCCP, APP-x)

- S_{snow}: NOAA/Rutgers binary snow cover product (1979–2008), derived from AVHRR data (*Robinson and Frei*, 2000)
- S_{ice}: Sea-ice concentrations (1979–2008) derived from passive microwave sensing (Cavalieri et al., 2008, NSIDC)
- $\Delta \alpha_{\rm snow}$: Snow-covered albedo: 2000–2008 MODIS surface albedo, filtered with NOAA/Rutgers binary snow cover
- Minimum and maximum $\Delta \alpha_{\rm snow}$ products created using albedo variance by land-class
- Sea-ice and associated $\Delta\alpha_{\rm ice}$ partitioned into first-year and multi-year components (Fowler et al., 2004; Perovich et al., 2002; Tschudi et al., 2010)
- $\partial F/\partial \alpha$: Radiative kernels derived from NCAR CAM3 and GFDL AM2 models (Shell et al., 2008; Soden et al., 2008), and radiative transfer modeling using global cloud products (ISCCP, APP-x)
- WCRP CMIP3 model archive

Snow-covered / snow-free albedo contrast ($\Delta \alpha_{\text{snow}}$)

- Reduced snow albedo impact over mature forests
- Large $\Delta \alpha_{\text{snow}}$ over grasslands and tundra
- NOAA/Rutgers "snow-covered" surfaces can be up to 50% snow-free

Sea-ice albedo

• Ranges indicate variability applied in min/max $\Delta \alpha_{ice}$ scenarios

Sea-ice albedo

- Ranges indicate variability applied in min/max $\Delta \alpha_{ice}$ scenarios
- Substantial darkening during summer melt

- Ranges indicate variability applied in min/max $\Delta \alpha_{ice}$ scenarios
- Substantial darkening during summer melt
- First-year ice tends to be darker because of greater morphological susceptibility to ponding and tendency to be thinner

1979–2008 mean cryosphere forcing (log-scale)

- ullet Annual-mean N. Hemisphere CrRF over land: $-2.0 \pm 0.8 \, \mathrm{W \, m^{-2}}$
- $-1.3 \pm 0.4 \,\mathrm{W}\,\mathrm{m}^{-2}$ Over sea-ice:

1979–2008 mean cryosphere forcing (log-scale)

- Annual-mean N. Hemisphere CrRF over land: $-2.0 \pm 0.8 \, \mathrm{W \, m^{-2}}$
- Over sea-ice: $-1.3 \pm 0.4 \, \mathrm{W \, m^{-2}}$
- $-1.36\,\mathrm{W}\,\mathrm{m}^{-2}$ Sea-ice estimate from Hudson (2011):

Cryosphere forcing produced with different methods

Table: N. Hemisphere CrRF [W m⁻²] averaged over 1979–2008

Kernel $(\partial F/\partial \alpha)$	Albedo contrast $(\Delta \alpha)$		
	Low	Central	High
CAM3	-2.3	-3.1	-3.9
AM2	-2.7	-3.6	-4.4
ISCCP	-2.2	-3.1	-4.0
APP-x	-2.6	-3.6	-4.6
CAM3 clear-sky	-4.5	-6.1	-7.7
AM2 clear-sky	-4.3	-5.7	-7.1

Cryosphere forcing produced with different methods

Table: N. Hemisphere CrRF [W m⁻²] averaged over 1979–2008

Kernel $(\partial F/\partial \alpha)$	Albedo contrast $(\Delta \alpha)$		
	Low	Central	High
CAM3	-2.3	-3.1	-3.9
AM2	-2.7	-3.6	-4.4
ISCCP	-2.2	-3.1	-4.0
APP-x	-2.6	-3.6	-4.6
CAM3 clear-sky	-4.5	-6.1	-7.7
AM2 clear-sky	-4.3	- 5.7	-7.1

 Clouds mask slightly less than half of the cryosphere radiative impact. Consistent with Qu and Hall (2005, 2007).

Seasonal cycle of cryosphere forcing

 Peak season for CrRF land: March-May

Seasonal cycle of cryosphere forcing

- Peak season for CrRF land: March-May
- In May, the Northern Hemisphere reflects an additional $\sim 9 \, \mathrm{W \, m^{-2}}$ to space because of the cryosphere

Seasonal cycle of cryosphere forcing

- Peak season for CrRF land: March-May
- In May, the Northern Hemisphere reflects an additional $\sim 9 \, \mathrm{W \, m^{-2}}$ to space because of the cryosphere
- Larger sea-ice effect in May than June because:
 - Larger areal coverage
 - Ice is more reflective (snow cover)

1979–2008 evolution of cryosphere forcing

30-year trends determined from anomalies in CrRF

1979–2008 change in cryosphere forcing

- 30-year change in land CrRF: $+0.22 (0.11 0.41) \,\mathrm{W} \,\mathrm{m}^{-2}$
- 30-year change in sea-ice CrRF: $+0.22 (0.15 0.32) \,\mathrm{W} \,\mathrm{m}^{-2}$

1979–2008 change in CrRF: Seasonal cycle

Figure: 'X' indicates month of statistically-significant change (p = 0.01)

 Sea-ice peak change occurs in summer

1979–2008 change in CrRF: Seasonal cycle

Figure: 'X' indicates month of statistically-significant change (p = 0.01)

- Sea-ice peak change occurs in summer
- June peak in land snow change is sensitive to mountain snow cover estimates (Himalaya, Tien Shan)

Changes in sea-ice extent

(a) September ice extent (NSIDC)

(b) Serreze et al (2007)

 Largest changes in extent have occured in September, but associated radiative perturbation is only modest

Change in CrRF produced with different methods

Table: Change in N. Hemisphere CrRF [W m⁻²] from 1979 to 2008

Kernel $(\partial F/\partial \alpha)$	Albedo Contrast $(\Delta \alpha)$		
	Low	Central	High
CAM3	0.26	0.38	0.48
AM2	0.29	0.40	0.49
ISCCP	0.40	0.57	0.72
APP-x	0.31	0.48	0.59
CAM3 clear-sky	0.58	0.82	1.00
AM2 clear-sky	0.58	0.77	0.97

Change in CrRF produced with different methods

Table: Change in N. Hemisphere CrRF [W m⁻²] from 1979 to 2008

Kernel $(\partial F/\partial \alpha)$	Albedo Contrast $(\Delta \alpha)$		
	Low	Central	High
CAM3	0.26	0.38	0.48
AM2	0.29	0.40	0.49
ISCCP	0.40	0.57	0.72
APP-x	0.31	0.48	0.59
CAM3 clear-sky	0.58	0.82	1.00
AM2 clear-sky	0.58	0.77	0.97

• CrRF changes are greater with annually-varying cloud conditions (ISCCP and APP-x) than with single-year model kernels

Change in CrRF produced with different methods

Table: Change in N. Hemisphere CrRF [W m⁻²] from 1979 to 2008

Kernel $(\partial F/\partial \alpha)$	Albedo Contrast $(\Delta \alpha)$			
	Low	Central	High	
CAM3	0.26	0.38	0.48	
AM2	0.29	0.40	0.49	
ISCCP	0.40	0.57	0.72	
APP-x	0.31	0.48	0.59	
CAM3 clear-sky	0.58	0.82	1.00	
AM2 clear-sky	0.58	0.77	0.97	

- CrRF changes are greater with annually-varying cloud conditions (ISCCP and APP-x) than with single-year model kernels
- Coupled cryosphere—cloud evolution needs to be studied on different scales (e.g., Kay and Gettelman, 2009)

Climate feedback components

• Climate sensitivity (λ) can be quantified in terms of parallel feedback mechanisms (i) as:

$$\lambda = -\left(\sum_{i=1}^{N} \frac{\partial F_i}{\partial T_s}\right)^{-1} \qquad [K(W m^{-2})^{-1}]$$
 (2)

Climate feedback components

• Climate sensitivity (λ) can be quantified in terms of parallel feedback mechanisms (i) as:

$$\lambda = -\left(\sum_{i=1}^{N} \frac{\partial F_i}{\partial T_s}\right)^{-1} \qquad [K(W m^{-2})^{-1}]$$

- IPCC AR4 figure 8.14
- WCRP CMIP3 global albedo feedback: $\sim 0.3\,\mathrm{W\,m^{-2}\,K^{-1}}$ (Winton, 2006; Soden et al., 2008; Shell et al., 2008)

(2)

$$\lambda = -\left(\sum_{i=1}^{N} \frac{\partial F_i}{\partial T_s}\right)^{-1} \qquad [K(W m^{-2})^{-1}]$$
 (3)

• What is $\Delta F_{cryo}/\Delta T_s$?

$$\lambda = -\left(\sum_{i=1}^{N} \frac{\partial F_i}{\partial T_s}\right)^{-1} \qquad [K(W m^{-2})^{-1}]$$
 (3)

- What is $\Delta F_{cryo}/\Delta T_s$?
- 1979–2008 feedback (from observations): $0.62 (0.3 1.1) \text{ W m}^{-2} \text{ K}^{-1}$

$$\lambda = -\left(\sum_{i=1}^{N} \frac{\partial F_i}{\partial T_s}\right)^{-1} \qquad [K(W m^{-2})^{-1}]$$
 (3)

- What is $\Delta F_{crvo}/\Delta T_s$?
- 1979–2008 feedback (from observations): $0.62 (0.3 - 1.1) \,\mathrm{W} \,\mathrm{m}^{-2} \,\mathrm{K}^{-1}$
- 1979–2008 N. Hemisphere warming:
 - NASA GISS temperature data: 0.79°C
 - HadCRUT3v record: 0.67°C

$$\lambda = -\left(\sum_{i=1}^{N} \frac{\partial F_i}{\partial T_s}\right)^{-1} \qquad [K(W m^{-2})^{-1}]$$
 (3)

- What is $\Delta F_{crvo}/\Delta T_s$?
- 1979–2008 feedback (from observations): $0.62 (0.3 - 1.1) \,\mathrm{W} \,\mathrm{m}^{-2} \,\mathrm{K}^{-1}$
- 1979–2008 N. Hemisphere warming:
 - NASA GISS temperature data: 0.79°C
 - HadCRUT3v record: 0.67°C
- CMIP3 1980–2010 N. Hemisphere albedo feedback (18 models): $0.25 \pm 0.17 \,\mathrm{W}\,\mathrm{m}^{-2}\,\mathrm{K}^{-1}$

$$\lambda = -\left(\sum_{i=1}^{N} \frac{\partial F_i}{\partial T_s}\right)^{-1} \qquad [K(W m^{-2})^{-1}]$$
 (3)

- What is $\Delta F_{cryo}/\Delta T_s$?
- 1979–2008 feedback (from observations): $0.62 (0.3 1.1) \text{ W m}^{-2} \text{ K}^{-1}$
- 1979–2008 N. Hemisphere warming:
 - NASA GISS temperature data: 0.79°C
 - HadCRUT3v record: 0.67°C
- Global cryosphere feedback is less because SH sea-ice extent has increased (e.g., Cavalieri and Parkinson, 2008)

• N. Hemisphere cryosphere radiative forcing is $-3.3\pm1.2\,\mathrm{W\,m^{-2}}$, peaking in May at $\sim9\,\mathrm{W\,m^{-2}}$

Conclusions

- N. Hemisphere cryosphere radiative forcing is $-3.3\pm1.2\,\mathrm{W\,m^{-2}}$, peaking in May at $\sim9\,\mathrm{W\,m^{-2}}$
- \bullet Boreal cryospheric cooling decreased by $\sim 0.45\,\mathrm{W\,m^{-2}}$ between 1979 and 2008, with nearly equal contributions from land snow and sea-ice reductions

- N. Hemisphere cryosphere radiative forcing is $-3.3 \pm 1.2 \,\mathrm{W}\,\mathrm{m}^{-2}$, peaking in May at $\sim 9 \, \mathrm{W \, m^{-2}}$
- \bullet Boreal cryospheric cooling decreased by $\sim 0.45\,\mathrm{W\,m^{-2}}$ between 1979 and 2008, with nearly equal contributions from land snow and sea-ice reductions
- 1979–2008 changes in sea-ice CrRF are largest during May–July, not September

Conclusions

- N. Hemisphere cryosphere radiative forcing is $-3.3\pm1.2\,\mathrm{W\,m^{-2}}$, peaking in May at $\sim9\,\mathrm{W\,m^{-2}}$
- \bullet Boreal cryospheric cooling decreased by \sim 0.45 W m $^{-2}$ between 1979 and 2008, with nearly equal contributions from land snow and sea-ice reductions
- 1979–2008 changes in sea-ice CrRF are largest during May–July, not September
- \bullet Boreal cryosphere albedo feedback is currently 0.6 (0.3 1.1) W m $^{-2}$ K $^{-1}$, more than double the mean feedback (0.25 W m $^{-2}$ K $^{-1}$) simulated by CMIP3 models over 1980–2010

Conclusions

- N. Hemisphere cryosphere radiative forcing is $-3.3\pm1.2\,\mathrm{W\,m^{-2}}$, peaking in May at $\sim9\,\mathrm{W\,m^{-2}}$
- \bullet Boreal cryospheric cooling decreased by \sim 0.45 W m $^{-2}$ between 1979 and 2008, with nearly equal contributions from land snow and sea-ice reductions
- 1979–2008 changes in sea-ice CrRF are largest during May–July, not September
- Boreal cryosphere albedo feedback is currently 0.6 $(0.3-1.1)\,\mathrm{W\,m^{-2}\,K^{-1}}$, more than double the mean feedback $(0.25\,\mathrm{W\,m^{-2}\,K^{-1}})$ simulated by CMIP3 models over 1980–2010
- Thanks to WCRP for supporting CMIP archive

Albedo contrast variability

- Minimum, central, and maximum $\Delta \alpha_{\rm snow}$ products derived from variance in albedo contrast by land classification.
- This variability is caused by:
 - Unresolved snow cover variability within the binary snow product
 - Variability in the influence of vegetation (within each land class) on albedo contrast

MODIS albedo and variability by land class

-	Snow-covered albedo		Snow-free albedo	
UMD Land Class	μ	σ	$\mid \mu \mid$	σ
Evergreen Needleleaf forest	0.31	0.07	0.10	0.02
Evergreen Broadleaf forest	_	_	0.14	0.01
Deciduous Needleleaf forest	0.36	0.06	0.12	0.01
Deciduous Broadleaf forest	0.35	0.08	0.14	0.02
Mixed forest	0.34	0.09	0.12	0.02
Closed shrublands	0.59	0.06	0.15	0.02
Open shrublands	0.60	0.12	0.19	0.05
Woody savannas	0.42	0.08	0.14	0.02
Savannas	0.49	0.09	0.16	0.02
Grasslands	0.55	0.13	0.19	0.04
Croplands	0.55	0.10	0.16	0.03
Urban and built-up	_	_	0.12	0.02
Barren or sparsely vegetated	0.48	0.14	0.26 ^c	0.07
Greenland	0.76	0.07	_	_

Factors influencing model land cryosphere forcing

- Surface downwelling insolation (cloudiness) (Qian et al., 2006)
- Snow cover fraction (Niu and Yang, 2007)
- Snow burial fraction (Wang and Zeng, 2009)
- Snow metamorphism (Flanner and Zender, 2006)
- Impurity-induced snow darkening