# Role of Land Use in Past and Future Carbon Response

Presented by Ronald J Stouffer

Elena Shevliakova, Sergey Malyshev, Lori Sentman, John Krasting, John Dunne, Jasmin John

Geophysical Fluid Dynamics Laboratory
27 October 2011



# Summary: Context and Outline

- Major challenges in climate-carbon interactions
  - The role of ocean in the uptake of heat and carbon
  - The role of land use and management for carbon
  - The uncertainty of CO<sub>2</sub> fertilization in the future
- GFDL has built successful ESMs
  - Comprehensive Carbon component description
  - Internally consistent, coupled carbon-climate interactions
- These ESMs allow:
  - Simulation of past global temperature and carbon changes
  - Increased understanding of the physical mechanisms
  - Detection and attribution of causes
  - Increased confidence in projections



# GFDL Earth System Models

- Atmosphere and sea ice components similar to CM2.1
  - 2 deg atmospheric model with 24 levels
- 2 different Ocean models
  - ESM2M MOM based (z-type vertical coordinate 50 levels)
  - ESM2G GOLD based (isopycnal vertical coordinate –
     63 layers)
  - Both models use a 1 deg tripolar grid
- New Land component (LM3) more later

# ESMs do a credible job simulating today's climate



- ESM2M and ESM2G surface climates are very similar
- Some
   notable
   differences –
   e.g. ENSO



### LM3 land model

- Land surface parameterization and hydrological processes
  - energy and water exchange between land, atmosphere and ocean
  - Liquid/frozen water dynamics, rivers and lakes
- Ecological processes and BGC cycling
  - Vegetation succession and growth
  - Carbon cycles
- Land use and management (works with AR5 LU scenarios)
  - Deforestation, wood harvesting and re-growth
  - Changes in surface characteristics (e.g. albedo and roughness)





# Tracers Of Phytoplankton with Allometric Zooplankton (TOPAZ) simulates the mechanisms that control the ocean carbon cycle





# **ESM emissions driven runs show similar atmospheric pCO<sub>2</sub> response to each other and observations**



- Emission driven runs have concentrations similar to observed
- •ESMs about 20ppm high in 2005 versus observations
- ESMs about70ppm higher thanRCP8.5 by 2100



### Model Evaluation: Carbon



- Fossil Fuel C emissions (FF) are stored in atm, land and ocean.
- Net Land C changes =
   FF atm C changes –
   ocean C changes



### ESMs' atmospheres accumulate slightly more Carbon than observed

### Change in Atmosphere Carbon Inventory



- ESM2M about 10-20 PgC too high by 2005.
- ESM2G slightly smaller than ESM2M by 2005.

# ESM ocean does a good job of simulating the observed carbon uptake

# Ocean Anthropogenic Carbon Inventory Change



- Ocean uptake proportional to atmospheric pCO<sub>2</sub> amount
- ESM2G smaller than ESM2M
- Both ESMs within uncertainty of Sabine et al. 2004

# ESMs represent the quantitative character of the global land response

Cumulative Change in Land Carbon Flux into Atmosphere



Tans = Tans 2009 estimate Fossil fuel + = FF+cement = Boden et al. (ORNL)

- •Land carbon fluxes change sign over 20<sup>th</sup> C
- Cumulative land fluxes larger than Fossil Fuel + fluxes until ~1940's
- •Both models get the observed decrease in past few decades but both miss the timing of the maximum

# Important Causes of Land Carbon Flux Changes

- Increasing atm pCO<sub>2</sub> (CO<sub>2</sub> fertilization)
  - Decrease in land carbon flux to atmosphere
    - More biomass More carbon stored in land plants
  - Magnitude uncertain nutrient limitations (N, P,...)
- Climate change
  - Warming => changes of both signs
  - Drying => plants stressed => mainly increase in land carbon flux to atmosphere



# Land use has a large impact on carbon changes over 20<sup>th</sup> Century

ESM2M - Cumulative Change in Land Carbon Flux into Atmosphere



- Land use yielded a large carbon flux to the atmosphere in 20<sup>th</sup> C
- Potential vegetation flux decrease mainly due to increased CO<sub>2</sub> fertilization
- Land use impacts carbon flux before 1860



# Large Uncertainty in Future Land C Changes Associated with CO<sub>2</sub> Fertilization

ESM2M - Cumulative Change in Land Carbon Flux into Atmosphere



- Uncertainty associated CO<sub>2</sub> fertilization of plants increasing over 20<sup>th</sup> century
- CO<sub>2</sub> fertilization land C flux curve looks more like observational estimates
- •In future, CO<sub>2</sub> fertilization of plants a large uncertainty
- •~600PgC => more than 300 ppm uncertainty over this century

# Summary

- Major challenges in climate-carbon interactions
  - The role of ocean in the uptake of heat and carbon
  - The role of land use and management for carbon
  - The uncertainty of CO<sub>2</sub> fertilization in the future
- GFDL has built successful ESMs
  - Comprehensive Carbon component description
  - Internally consistent, coupled carbon-climate interactions
- These ESMs allow:
  - Simulation of past global temperature and carbon changes
  - Increased understanding of the physical mechanisms
  - Detection and attribution of causes
  - Increased confidence in projections



# Questions?



# The ESMs represent the major component and interactions of the carbon cycle

#### A) Siegenthaler and Sarmiento (1993)\*



# Preindustrial Carbon Cycle in ESM2M and ESM2G

#### B) ESM2M



#### C) ESM2G



\*includes modified ocean pools and fluxes (Sarmiento and Gruber, 2006; Sabine et al., 2004)



### ESM2M and ESM2G differ only in ocean physics

#### Goal: Comparison of implications of ocean vertical coordinate choice



Z ↑ X



z\* (MOM4.1):

- Laterally adjacent pressures interact
- Good representation of near surface
- Eulerian framework relatively straightforward to interpret
- Over 40 years of experience with it

 $\rho$  (GOLD):

- Laterally adjacent densities interact.
- Bulk mixed layer allows continuously varying mixed layer properties
- Good representation of overflows
- No numerical diapycnal mixing

Question 1: Can they both give credible climates?

**Question 2: How similar are the climate responses?** 



## Earth System Models\* close the carbon cycle

**Climate Model** 



Earth System
Model\*

Allows Interactive CO<sub>2</sub>

Sea Ice
Ocean ecology and
Biogeochemistry
Ocean circulation

Allows Interactive CO<sub>2</sub>

Plant ecology and land use

Land physics
and hydrology



# Vegetation structure in the LM3 land model



5 vegetation types

**5 vegetation C pools** 

2 soil C pools

4 land-use types

Sub-grid heterogeneity to represent forest ages

**Natural mortality and fire** 



# ESMs Allow Two Types of Experiments

- Concentration driven
  - Atmospheric pCO<sub>2</sub> restored towards some specified value (time constant of 1 year)
  - Since concentration same in runs, allows comparison of physical response
- Emission driven
  - Model predicts atmospheric pCO<sub>2</sub> from various fluxes and human emissions (if used in run)
  - Allows full feedbacks between carbon and climate



### Land largest source to atmosphere before ~1960

#### Cumulative Carbon Release into Atmosphere



- Fossil fuel
   emissions currently
   largest carbon
   source to atm
- Ocean uptake proportional to atm pCO<sub>2</sub> amount
- Land carbon fluxes change sign over
   20<sup>th</sup> C



#### **Model Land Carbon fluxes similar to Obs Estimates**



estimates very similar in magnitude

 Land flux changes sign near 1950



# ESM2M (conc driven) Shows Similar Global Surface Air Temperature Response to CM2.1

#### Surface Air Temperature Response



- ESM2M C1
   response may be
   slightly smaller than
   CM2.1 in historical
   period
- Both models do good job of simulating observed trend



# ESMs concentration (C1) and emission (E1) driven runs show similar Global Surface Air Temperature Response

#### Surface Air Temperature Response



- Two different forcings (C & E) give very similar responses
- Both models
   (M&G) do good job
   of simulating
   observed trend
   using emissions and
   concentrations.



### ESMs C1 and E1 also Similar in Future (RCP8.5)

C1=concentration; E1=emission

#### Surface Air Temperature Response



- Two different forcings give very similar responses
- ESM2M: Emission driven run slightly warmer than concentration run
- ESM2G: Slightly cooler than 2M in middle of this century



### Land use has huge impact on carbon changes over 20th C

### Land carbon flux into atmosphere



Land C flux including land use

Land C flux no land use

Land C flux no land use area changing

- Land use yielded 1-2 PgC/yr (0.5-1 ppm/yr pCO<sub>2</sub>) to atmosphere
- Potential
   vegetation flux
   decrease due to
   increased CO<sub>2</sub> fert
- Land use impacts carbon flux before 1860



# What happens to land fluxes in the Future?

#### Land Carbon Flux into Atmosphere



Note: 11 yr running means used

- RCPs have land taking up carbon in early part of this century
- All RCPs have LU stop changing near 2100 (land C flux goes toward zero)
- Interactions of climate change and CO<sub>2</sub> fert among RCPs

### **Uncertainty Associated with CO<sub>2</sub> Fertilization**





- Uncertainty associated CO<sub>2</sub> fertilization of plants increasing over 20<sup>th</sup> century
- CO<sub>2</sub> fertilization land C flux curve looks more like observational estimates
- •In future, CO<sub>2</sub> fertilization of plants a large uncertainty
- •2-4 Pg/yr => 1-2 ppm/yr => more than 150 ppm over this century

### Cumulative Emission Flux into atmosphere



- Fossil fuel emissions currently largest carbon source to atmosphere
- Model and observed agree – we input the emissions correctly...

### **Future Directions**

#### CMIP5

- ESM2M runs complete; ESM2G running
- Several 10's TB are appearing on our server now
- New Experiments
  - Exploring various science questions with ESM2M and ESM2G
- Model Development (e.g.):
  - Comprehensive land biogeochemistry (dust, CH<sub>4</sub>, N, P, ...)
  - Higher trophic levels in ocean (connection to fish)
- Exploring Higher Resolution ESM2.5
  - CM2.5 based 1/2 deg atmosphere, 0.25 deg ocean
  - Status: just running
  - Investigating potential for decadal ecosystem prediction

