A Lagrangian Moisture Source and Attribution
Model for Southern Africa

or
“Where does all the water come from?”

Christopher Jack
Climate System Analysis Group
University of Cape Town
South Africa




The hydrological cycle: Where, how, how much?
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Background

Precipitation is arguably the most important climate parameter for much of
sub-Saharan Africa

... and yet our understanding of the regional dynamics of moisture and
rainfall is still poor

Precipitation has two prerequisites:
* The presence of sufficient atmospheric moisture

* A source of uplift (circulation, orography, convection)

-

So the question is, for any precipitation event:
Where did the water evaporate from?
Which sources are most “important”?
What circulation sequencing moved it fo the event?




Existing approaches

Sensitivity studies
Run confrol and perturbed simulations and evaluate the model sensitivity

« Ocean sources:
Increase/decrease SSTs in a region (where?) and evaluate model response

 Land surface source

Force soil moisture or inifialize with perturbed soil moisture
(New, Hewitson, Jack and Washington, CLIVAR Exchanges 2003)

BUT

*We have to pre-suppose where the source region might be and it has to stay the
same under all synoptic conditions

*Perturbations influence both circulation and moisture, how do we disaggregate?



Existing approaches

Moisture source diagnosis

Direct techniques: Collected rainwater isotope analysis (Gat and Matsui 1991)
* Not dependent on model fields, direct observation
* Limited by observations and resolution
* Doesn't revedl pathways or circulation dynamics

Time mean, vertically infegrated, moisture flux and flux divergence
* Time meaning hides high frequency dynamics (synoptic event sequencing)
« Vertically integrated or particular levels (which ones?)

Model water vapor tracers (Koster et al. 1986, Bosilovich and Schubert 2002)
« Requires pre-specifying source regions
* Inline running requires modificafion of model code

Bulk water balance methods (recycling analysis, many variations):
» Works well for large scale climate means but can't really handle events
« Assumptions of complete mixing and linear flow



A quick aside; CORDEX"?

Coordinated Regional Downscaling Experiment

*Multiple CMIPS GCMs driving multiple RCMs to form a matrix of regional
downscaling data sefts

*Exploring and evaluating regional moisture balances and dynamics provides
important insights info model performance and diagnosis of problems
and differences between models
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A Lagrangian moisfure source model: trajectory genesis

Developed 1o be forced by RCM output fields (offline)
Time reversed trajectories (more efficient) 3.qU ge=——______®
Specify a target domain

Represent full moisture flux info a
target domain as trajectory parcels

Parcel moisture changes accumulated
Filter frajectories on exifing target domain:
> 5% moisture change

RCM precipitation
RCM rain liquid water




A Lagrangian moisfure source model: ppt/evap diagnosis

Precipitative losses and evaporative gains diagnosed at each time step (15 min):

Precipitation: change in moisture > 1%
RCM precipitation > 0.2mm / day
RCM rain liquid water > 0

Evaporation: change in moisture > 1%
Altitude < top of PBL

Source A: 25mm
Source B: 25mm

Source A: 25mm

Precipitation: 25mm
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Evaporation: 25mm
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A Lagrangian moisture source model: source affribution

The afttfribution coefficient captures the reduction in conftribution of upstream
evaporative source caused by losses to precipitation events en-route
Idealised Trajectory
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Some challenges

Trajectory integration errors

Higher spatial resolution (RCM) and temporal resolution (1 hourly)
fields required for reasonable trajectory accuracy

Precipitation and evaporation diagnosis

Interpolation and trajectory errors produce spurious moisture changes
Filfering produces an underestimated diagnosis of precipitation

Convection, convection, convection...

Not represented in model output fields
Produce moisture profile changes that cannot be diagnosed offline

For climate system analysis, vulnerable to model error
(model climate not real climate!)



Two summer season experiment
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A single event example from 1988/89 season:

(a) 31 Dec 1988
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A single event example from 1988/89 season:
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Two summer season experiment: ocean 1988/89




Two summer season experiment: land surface 1988/89
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Two summer season experiment: Eastern boundary source
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Two summer season experiment: Eastern boundary source
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Two summer season experiment: affribution summaries

SA1 Land Ocean North South West East Total
Dec | 29 (38%) | 11 (15%) 2 (3%) 11 (15%) | 18 (24%) 4 (5%) 76
Jan | 21 (40%) | 7 (14%) 1 (1%) 10 (20%) | 10 (20%) 3 (6%) 53
Feb | 25 (35%) | 10 (13%) 2 (2%) 14 (19%) | 16 (22%) 6 (9%) 72
SA2 Land Ocean North South West East Total
Dec | 29 (41%) | 11 (15%) 5 (7T%) 7 (9%) 13 (18%) 7T (9%) 72
Jan | 25 (39%) | 12 (18%) 1(2%) 8 (13%) 9 (14%) 9 (14%) 63
Feb | 21 (39%) | 7 (13%) 2 (3%) 8 (14%) | 10 (18%) | 7 (12%) 54
SA3 Land Ocean North South West East Total
Dec | 51 (40%) | 23 (18%) | 14 (11%) | 11 (8%) 11(9%) | 18 (14%) | 128
Jan 34 (41%) 13 (15%) 4 (5%) 8 (10%) 11 (13%) 13 (16%) 84
Feb | 10 (26%) | 5 (13%) 1 (4%) 4 (10%) 3 (9%) 15 (39%) 38
SA4 Land Ocean North South West East Total
Dec | 25 (38%) | 12 (18%) 3 (4%) 11 (16%) | 11 (17%) | 5 (8%) 37
Jan 30 (37%) 17 (21%) 1(1%) 13 (15%) 7 (9%) 13 (16%) 81
Feb | 26 (36%) | 14 (19%) 2 (3%) 11 (15%) 1 (6%) 16 (22%) 7:




Two summer season experiment: ocean with synoptics l




Two summer season experiment: land with circulation l




Seasonal results: A leap frog mechanism?
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Seasonal results: A leap frog mechanism?
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Seasonal results: A leap frog mechanism?

Ocean surface

Moisture is indeed (of course) ocean sourced but perhaps not directly
Mode of "advection” includes precip/evaporation cycles

What is the role of land surface characteristics?

Precipitations events potentially strongly related to prior events?

What about interactions with synoptic sequencing?



Conclusions and future

The methodology

*Seems to produce reasonable results though validation is difficult
*Provides some very useful insights into the simulafted climate moisture dynamics
*A useful RCM diagnosis and inter-comparison tool?

The results

*Suggests moisture source dynamics and moisture tfransport in the region
includes a significant regional, land surface, component rather than just remote

*Point towards more targeted and detailed sensitivity studies

Future

*Drive with cloud resolving model in order to avoid convection limitatfions
*Develop diagnostics tailored to exploring leap-frog moisture fransport dynamics
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