Representing Model Uncertainty:

A Case Study in Seamless
Prediction




Why is it so difficult to simulate climate
accurately?

What, fundamentally, is the source of
model error?

How can we represent reliably the
impact of model error in climate
forecasts?



A (shallow) power law for atmospheric energy
wavenumber spectra
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No scale separation between resolved and unresolved
scales in weather and climate models




Deterministic parametrisation assumes some scale
separation between the resolved flow and the
unresolved parametrised scales (eg Arakawa and

Schubert, 1974) eg

Model grid box




Power-law structure indicates that reality 1s more like....
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Power law structure is consistent with scaling
symmetries for Navier Stokes...

Let v, p be a solution to the incompressible

Navier Stokes equations.

Then, foranyt€R ",

~1/2 X 4
v (x,0)=T V(—l/2 ,—)
T T

_ x
p.(x,t)=T lp( 12 ’_)
T T

1s also a solution pair




What, fundamentally, is the source of
model error?

Violation of power law/ scaling symmetries by the
conventional deterministic truncation/parametrisation
ansatz is fundamentally the source of model errror and

uncertainty.

How can we represent reliably the impact
of model error in climate forecasts?



The Multi-Model Ensemble

v

e A pragmatic approach to the representation of model

uncertainty

* Insensitive to systemic errors related to the violation of
power-law, scaling symmetries of the underlying partial
differential equations, by all members of the MME. The
models are structurally too “similar”.



On the Effective Number of Climate Models

Pennell and Reichler. J.Clim. 2011

“The strong similarities in model error structures found in
our study indicate a considerable lack of model diversity.
It is reasonable to suspect that such model similarities
translate into a limited range of climate change
projections.”
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Experiments with the Lorenz ‘96 System (ii
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Skill in simulating climate pdf

Arnold et al, in preparation ™,

Deterministic

White Additive AR1 Additive

Multiplicative

Assume Y
unresolved

(j=-D/J+1]

Approximate
sub-grid
tendency by U

Deterministic: U =U,,
Additive: U=Uy, +e,,
Multiplicative: U =(1+e,) U,
Where:

Uget = Ccubic polynomial in X

e, = White / red noise

Fit parameters from full model
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Brier Skill Score: ENSEMBLES MME vs ECMWEF

stochastic physics ensemble (SPE)

lead time: 1 month
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Hindcast period: 1991-2005
SP version 1055m007

Weisheimer et al GRL (2011) — See poster




Vorticity

Northern Extra-Tropics model level 50
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Performance of stochastic parametrisation in data assimilation
mode. M. Bonavita, personal communication.



Stochastic Parametrisation
4

Potentially a more rigorous approach to the representation of
model uncertainty than MMEs - more consistent with

underlying scaling symmetries, power laws etc.
Can outperform multi-model ensembles on monthly/seasonal

timescales X

Needs to be further developed at the process level and
extended to other components of the earth-system (oceans,

land surface etc)

Limited results to date



Community-wide approach towards a Probabilistic
“ Earth-System Model — enabling human and

)’ 4 computing resources to benefit from economies of
—SECa e ?




International
Centre for
Earth
Simulation




Network on Stochastic Parameterization

Initiated at a recent Isaac Newton Institute programme on
mathematics and climate

Moderated by Judith Berner (NCAR) and Tim Palmer, (Univ. of
Oxford, ECMWEF)

URL has info on how to subscribe and post messages and get
help from the site administrator

Every member can post to list

Sign up at
http://mailman.ucar.edu/mailman/listinfo/stoch




Experiments with the Lorenz ‘96 System (i)
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Bringing the insights and constraints of
NWP to the climate-change timescale.

Using data assimilation to constrain climate sensitivity

Rodwell, M.J. and T.N.Palmer, 2007: Using numerical weather prediction to assess climate
models. Q.J.R. Meteorol.Soc., 133, 129-146.

Using Sl prediction as a test of reliability of multi-model precip climate change probability

Palmer, T.N., F.J. Doblas-Reyes, M. Rodwell and A.Weisheimer, 2008: Bulletin Am Met Soc



