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Motivation

How does state-independent and state-dependent stochastic forcing
affects ENSO variability in a sophisticated coupled model?

Westerly Wind Burst (WWB) do occurs, but are not well represented
in Coupled General Circulation Models (CGCM) due to major bias in
the mean state.

WWSABs are observed during the onset and development of major El
Niflo events (Kerr 1999).

WWSABs are known to have a deterministic component, modulated by
the Sea Surface Temperature (SST).

Proper representation of WWBs could improve ENSO prediction.

Eventually reach a better understanding on ENSO prediction and
predictability.



Background

* Westerly wind bursts (WWBs) events are commonly viewed

as completely stochastic processes, independent of any
oceanic forcing.

 Recent work and observations have suggested that these
events also contain a deterministic component, modulated
by the SST.

* These events seem to result from various mechanisms:

— The Madden-Julian oscillation (MJO; Chen et al. 1996).
— Cold surges from mid latitudes (Chu 1988).

— Tropical cyclones (Keen 1982).

— A combination of the three (Yu and Rienecker 1988).



Numerical Experiment

 The Community Climate System Model version 3.0 (CCSM3), is
integrated for several hundred years with three different initial
conditions:

. No Westerly Wind Burst (WWB) event. This is our control run.

The state-independent run, here the WWB are added to the model as additive

noise and are parameterized based on 50 years atmospheric reanalysis data
and observed estimates of tropical Pacific SST.

. The state-dependent run, here the WWB are introduced as multiplicative
noise modulated by the SST, the probability of occurrence is different from
the stochastic case in that it depends on the large-scale SST anomalies.

 The wind anomalies are always positive (eastward) with not
westward counterpart.



Three WWBs realizations [m/s] with observed SSTA [°C], showing cross-section
along the equatorial Pacific Ocean
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Cold Events Bias

* DIJF extreme events (in deg C) for
<1.00 10 30 61 201 model years
— The state-dependent case
<-1.25 32 23 52 produces more ENSO events in
<-1.50 99 15 10 both extremes.
<-1.75 13 8 34 — The bias toward cold events is also
<-2.00 reduced in that case, except for
> 1.00 — The state-independent case
produces less ENSO events overall.
>1.25 22 16 61
>1.50 9 6 48 — Hint of a shift from an event type
to a oscillatory behavior in the
>1.75 2 3 22 state-dependent case.

>2.00 1 1 4



mu=0.0, std=0.79, skew=-0.25, kurt=-0.28 mu=0.0, std=0.75, skew=-0.25, kurt=0.09
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WWB and equatorial wave dynamics

Control

e SSH variance shows three
common regions of action for
the three experiments.

* These coincide with the
equatorial waveguide.
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* Nino 3.4 variance is related to
upwelling-downwelling Kelvin
waves.
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Lag-lead correlation along the Equator, SST (shaded), zonal wind stress (contour)
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Time ( in Months )

Composite of top 5 WWB events (Ensemble Mean)

State-dependent case

SST Anomaly

State-independent case

SSH Anomaly
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Time ( in Months )

Composite of 5 modest warm events (Ensemble Mean)

State-independent case

SST Ancmaly SSH Anomaly
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Summary and conclusions:

WWABs were introduced in CCSM3 as state-independent and
dependent forcing.

Basic statistics cannot detect the differences between the control and
the state-independent case.

The state-dependent case produces more ENSO events in both
extremes, and the bias towards the cold phase is reduced.

Lag coherence is degraded (enhanced) in the state-independent
(state-dependent) case.

ENSO characteristics have hifted from an event type to an oscillator
type as the experiment progress from the state-independent to the
state-dependent case.



Future Work:

The amplitude, persistence, and spatial extent of the WWB appear to
be enhanced by the coupling with the SST, it is not clear yet how this
may affect these results.

Study the impact of each individual components (i.e. amplitude,
persistence, central latitude and longitude, and western and eastern
extent), on the large scale fields.

A new version of this model was recently released, CCSM4 , it has a
more reasonable ENSO period. One future problem is to extend the

study to this model.

With this, we would be able to compare the effects of different
parameter and different models as well.

Analyze in more detail the ENSO predictability and prediction.
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