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1. Introduction 19 

This paper briefly reviews some aspects of the current status of research on changes in climate 20 

extremes, identifying gaps and issues that warrant additional work. This paper focuses primarily on 21 

the historical instrumental record, giving a sense of the nature of the results that have been 22 

obtained, challenges that arise from observational, methodological and climate modelling 23 

uncertainties and discussing the extent to which detection and attribution research has been able 24 

to link observed changes to external forcing of the climate system. It also very briefly discusses 25 

projections for the 21st century. Extremes are not discussed on paleo time scales, in the context of 26 

the present (i.e., short term forecasting), or in the context of climate surprises (extreme tipping 27 

points). These choices reflect our desire not to attempt too broad a review of the topic due to 28 

space constraints of this short paper, as well as a view that very high priority should be given to 29 

reducing uncertainty in our understanding of historical changes in extremes over the instrumental 30 

period as a prerequisite to confidently predicting changes over the next century. This includes the 31 

development of improved and comprehensive observational records, improvement in our ability to 32 

confidently detect changes in observations through the development of better physical models, 33 

forcing data sets and more power statistical techniques, the development and refinement of our 34 

understanding of the physical processes that produce extremes, and continued improvement in our 35 

ability to attribute causes to those changes. This does not imply that research on extremes on paleo 36 

timescales or on the projection of future changes in extremes is of lesser importance, but rather 37 

that overall progress on understanding implications of ongoing and future changes in extremes will 38 

be strongly dependent upon our ability to document and understand changes in extremes during 39 

the period of history that has been (and continues to be) most comprehensively and directly 40 

observed. 41 

Considerable confusion results from the various definitions of extremes that are used in climate 42 

science. Part of this confusion occurs because the word extreme can be used to describe either a 43 

characteristic of a climate variable or that of an impact.  In the case of a climate variable, such as 44 

surface air temperature or precipitation, the notion of an extreme is reasonably well defined and 45 

refers to values in the tails of the variable’s distribution that would be expected to occur relatively 46 

infrequently. However, even in this case, there can be ambiguity concerning the definition of 47 

extremes. For example, a great deal of climate research on “extremes” deals with indicators of the 48 

frequency or intensity of events that, in fact, describe parts of the distribution that are not very 49 

extreme, such as warm events that occur beyond the 90th percentile of daily maximum 50 

temperature. Such events lie well within the samples of observations that are collected each 51 

season, and they are typically studied by determining whether there are trends in their rates of 52 

occurrence.  They are often referred to as “moderate extremes” in the literature (and we will also 53 

use that term occasionally below), but this term is not one that is used in statistical science to 54 

describe the upper part of a distribution (statisticians would rather refer to things like the 90th 55 

percentile, which they would not consider to be extreme). Nor does the term accurately describe 56 

the collection of ETCCDI indices (Klein Tank, et al, 2009) since they characterize various points in the 57 

distributions of daily temperature and precipitation observations. 58 
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In addition to the literature on indices, or “moderate extremes” of climate variables, there is also 59 

another body of work that deals with rare values of climate variables that occur only infrequently 60 

and are generally not expected to recur each year. In this case the concept corresponds well to that 61 

used in the statistical sciences, and thus powerful statistical tools based on extreme value theory 62 

are available to aid in the analysis of historical and future extremes (e.g., Coles, 2001; Katz et al, 63 

2002). Such tools were originally developed to make statements about what might happen outside 64 

the range of the observed sample, such as the problem of estimating the 100 year return value on 65 

the basis of a 30- or 40-year sample. Hence, the notion of "extremes" is defined here as very high 66 

quantiles, such as the 95th, 99th or 99.9th percentiles of annual maximum values. An important 67 

aspect of this theory is to quantify the uncertainty of such extrapolations through the computation 68 

of suitably constructed confidence intervals. Increasingly, these tools are being used in the 69 

evaluation extreme events simulated in climate models (e.g., Kharin et al, 2007; Wehner et al, 70 

2010). These tools are being further developed in the statistical sciences, and there is currently a 71 

very high level of interaction between that community and the climate sciences community on the 72 

development and application of methods that can be used in the climate sciences, such as the 73 

ExtREmes toolkit (see http://www.assessment.ucar.edu/toolkit/).  74 

In the case of extremes defined by their impacts, the concept of what constitutes an extreme may 75 

be less well defined, and this may affect the approaches that are available for analysis. For example, 76 

all tropical cyclones that are classified as Category 1-5 storms on the Saffir-Simpson scale are 77 

generally considered to be extreme because of their high potential to cause damage from high 78 

winds, rainfall, and/or storm surge flooding.  Nevertheless, they are a natural component of the 79 

climate system and occur in more or less constant numbers (globally) each year. They are more 80 

difficult to characterize statistically than, for example, extreme temperature events, because the 81 

numbers of tropical cyclones within a region are not constant, the regions affected vary with time, 82 

and historical data concerning characteristics that might be used to identify tropical cyclones with 83 

characteristics in the tails of the corresponding distributions are subject to substantial 84 

inhomogeneities due to the evolution of our observing systems.   85 

For the purpose of this article we define “extreme events” as well-defined weather or climate 86 

events (including tropical cyclones) that are rare within the current climate. With the term “well-87 

defined” we understand that these events may be defined in terms of measurable physical 88 

quantities such as temperature, precipitation, wind speed, runoff levels or similar; and the term 89 

”rare” is used to refer to values in the tails of the variable’s distribution as discussed above.  90 

It is important to note that the linkage between extreme events and extreme impacts (i.e. natural 91 

disasters) is not straightforward. An extreme event does not necessarily imply any damages. Rather 92 

the implied damages also depend upon the distribution of values, population density, emergency 93 

response measures, etc. Similarly, not all damages from a weather or climate events are related to 94 

extreme events as defined above. For instance, poor building practices may allow a “normal” or 95 

moderate event to generate extreme damages. This issue is very familiar to the re-insurance 96 

industry that uses damage models to link extreme events to impacts (e.g. Klawa and Ulbrich 2003, 97 

Watson and Johnson 2004) 98 
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The structure of the remainder of this paper is as follows. The paper begins in Section 2 with a 99 

discussion of the status of research on simple indices that are derived from daily (or occasionally 100 

more frequent) observations that are collected primarily at operational meteorological stations. 101 

The main focus here is on temperature and precipitation extremes, but wind extremes derived 102 

from station data are also discussed. Section 3 discusses storms (extra-tropical cyclones, tropical 103 

cyclones and tornadoes). This is followed by a discussion of hydrological extremes (droughts and 104 

floods) in Section 4, and extreme sea-levels (e.g., storm surge events) in Section 5.  A summary and 105 

recommendations are presented in Section 6. Amongst other sources, the paper draws upon the 106 

IPCC 4th Assessment Report (IPCC 2007a, IPCC 2007b), the US Global Change Program Special 107 

Assessment Product on extremes (i.e., CCSP 3.3, Karl et al, 2008), the recent WMO assessment on 108 

tropical cyclones (Knutson et al, 2010), and on a very recently completed review of research on 109 

indices by Zhang et al (2011).   110 

2. Simple indices derived from daily data 111 

 112 

a. Introduction  113 

The indices that are discussed in this section are generally derived from daily observations of 114 

individual meteorological variables, such as temperature or precipitation. Indices calculated from 115 

daily data have appeal for a number of reasons, including the fact that they are relatively easy to 116 

calculate and that they summarize information on changes in variability compactly, and in a way 117 

that is accessible to a broad range of users.  118 

Indices have been designed to characterize different parts of the distribution of a given variable. 119 

The indices that are of interest here are those that characterize aspects of the tails of the 120 

distribution (the “extremes”) since these tend to be more relevant to society and natural systems 121 

than indices that characterize aspects of the distribution that occur more frequently. This is 122 

because the more extreme an event, the more likely it is to cause societal or environmental 123 

damage. However, analyses of changes in the frequency or intensity of extremes that are further 124 

out in the tail of the distribution are inherently more uncertain because less data are available to 125 

identify and characterize possible changes (Frei and Schär 2001). Moreover, extreme impacts may 126 

also occur following moderate events, e.g. when these are compounded with other climate events 127 

(see discussion in Hegerl et al, 2011) or with increased vulnerability or exposure of society or 128 

ecosystems to such events. Conversely, statistically very rare events may not necessarily lead to 129 

impacts if there is either no exposure or no vulnerability to the particular event. Thus the impact of 130 

an extreme event may depend on its season, its duration, and co-occurrence of further extremes, 131 

such as drought conditions with heat waves. 132 

Most indices of extremes tend to represent only “moderate extremes,” i.e. those that typically 133 

occur at least once a year. In some cases, changes in the tails, as indicated by changes in the 134 

indices, are essentially similar to those in other parts of the distribution (Figure 1). However, even 135 

for temperature, changes may be seen that are not consistent between means and extremes, 136 
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minimum and maximum, and upper and lower tail (e.g. Hegerl et al., 2004; Kharin et al., 2007) due 137 

to alterations in feedback processes that may affect different parts of the distribution differently 138 

(e.g. Hirschi et al, 2011). Some indices for climate extremes can also be used for secondary 139 

inference; for example, statistical extreme value theory can be used to estimate long return period 140 

precipitation amounts from long time series of annual maximum daily precipitation amounts (Klein-141 

Tank et al, 2009). It should be noted that the estimation of return levels is often based on the 142 

assumption of spatial and/or temporal independence among sites or grid points (either on the raw 143 

data or conditionally on their distributional parameters). Consequently, uncertainties can be 144 

underestimated or these assumptions can be challenged. 145 

 

Figure 1: Schematic representations of the probability 
distributions of daily temperature, which tends to be 
approximately Gaussian (exceptions can be caused by 
soil freezing, or by energy balance constraints, e.g. 
Fischer and Schär 2009), and daily precipitation, which 
has a skewed distribution. Extremes are denoted by 
the shaded areas. In the case of temperature, changes 
in the frequencies of extremes are strongly affected 
by changes in the mean; a relatively small shift of the 
distribution to the right would substantially increase 
warm extremes and decrease cold extremes. In 
addition, the frequency of extremes can also be 
affected by changes in the shape of the tails of the 
temperature distribution, which could become wider 
or narrower, or could become somewhat skewed 
rather than being symmetric as depicted. In a skewed 
distribution such as that of precipitation, a change in 
the mean of the distribution generally affects its 
variability or spread, and thus an increase in mean 
precipitation would also likely imply an increase in 
heavy precipitation extremes, and vice-versa.  In 
addition, the shape of the right hand tail could also 
change, affecting extremes. Furthermore, climate 
change may alter the frequency of precipitation and 
the duration of dry spells between precipitation 
events. From Folland et al (1995) and Peterson et al 
(2008). 

In addition to indices that summarize various aspects of the tails of the daily variability of individual 146 

meteorological parameters, there have also been a variety of attempts to build indices that 147 

incorporate information from multiple parameters to summarize information related to impacts, 148 

such as fire weather indices that were first developed for operational use in wild fire risk 149 

management (e.g., Van Wagner, 1987) and subsequently used to study the potential impacts of 150 

climate change on wild fire frequency and extent (e.g., Flannigan et al, 2005). Similar types of 151 

development are seen in a variety of indices (another example being heat indices such as that 152 

described by Steadman, 1979; Karl and Knight 1997; Fischer and Schär 2010). Since these types of 153 

indices are impact specific, their construction must ultimately be informed by the characteristics 154 
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and functioning of the system (ecological, social, or economic) or biological organism that is 155 

impacted (health, agriculture). This requires inter- and trans-disciplinary collaboration, and involves 156 

a range of potential compound indices far greater than would be required to monitor and 157 

understand change in the physical climate system. 158 

b. Status  159 

i) Temperature and precipitation indices 160 

Many indices have been defined (e.g., Frich et al, 2002; Klein-Tank et al, 2009) for the purpose of 161 

monitoring changes in the moderately far tails of surface variables such as temperature and 162 

precipitation that are routinely observed on a daily, or more frequent, basis. These indices include: 163 

(i) absolute quantities such as the annual maximum and minimum temperature and the annual 164 

maximum precipitation; (ii) the frequency of exceedance beyond a fixed absolute threshold, such as 165 

the annual count of the number of days with precipitation amounts greater than 20 mm; (iii) the 166 

frequency of exceedance above or below fixed relative thresholds such as the 90th percentile of 167 

daily maximum temperature or the 10th percentile of daily minimum temperature where the 168 

threshold is determined from a climatological base period such as 1961-90; and (iv) dimensionless 169 

indices, such as the proportion of annual precipitation that is produced by events larger than the 170 

95th percentile of daily precipitation amounts, where the threshold is again determined from a fixed 171 

base period. These indices are studied because they describe aspects of temperature and 172 

precipitation variability that have been linked, in one way or another, to societal or ecological 173 

impacts. Their calculation is actively coordinated by the CLIVAR/CCl/JCOMM Joint Expert Team on 174 

Climate Change Detection and Indices (ETCCDI). The state of development of these indices has 175 

recently been reviewed comprehensively by Zhang et al (2011).  176 

The calculation of indices requires high quality, high frequency (daily or better), homogeneous 177 

meteorological data. High quality data are available from hydro-meteorological services in many 178 

parts of the world, and are often freely available for scientific research at least nationally, if not on 179 

a fully open basis internationally, though various limitations to (mostly raw) data access remain an 180 

issue (see also point i below). Data availability is generally greater in developed countries than in 181 

developing countries, where resources and/or mandate sometimes limit the collection and 182 

dissemination of daily meteorological observations, although restricted data access also remains a 183 

problem in some developed countries. The ETCCDI has an ongoing program of open source 184 

software development and international workshops that are intended to train developing world 185 

scientists in the homogenization of data that are collected by their hydro-meteorological services, 186 

and in the subsequent calculation of indices (Peterson et al, 2008). The calculated indices are 187 

published in the peer-reviewed literature (e.g., Aguilar et al, 2009) and are subsequently 188 

contributed to global scale index datasets such as HadEX (Alexander et al, 2006) and the 189 

subsequent updates (e.g. Donat and Alexander, 2011; Alexander and Donat, 2011), thereby helping 190 

to improve the global coverage of these datasets and consequently enabling more confident global 191 

scale monitoring and detection and attribution. 192 
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While the ETCCDI type of approach is helpful, there are nevertheless ongoing challenges. These 193 

include:  194 

i. Concerns about the reproducibility of the entire chain of index production. Currently the 195 

reproducibility of the entire processing sequence cannot be guaranteed because, while 196 

methods and codes are freely available, the underlying daily station data are not always 197 

openly accessible to the international scientific community because regional data gathering 198 

organizations may not have the capacity or mandate to support open data dissemination.  199 

ii. Lack of access to daily station data also implies a lack of access to metadata describing the 200 

history of observing stations. This is important concern because small changes in observing 201 

station location or exposure can lead to large artificial changes in extremes. In the absence 202 

of station metadata, it is often difficult to determine if such issues have corrupted indices 203 

derived from the underlying data. 204 

iii. Lack of real-time updating, particularly for regions that are unable to contribute to the 205 

Global Historical Climate Network (GHCN, see http://www.ncdc.noaa.gov/oa/climate/ghcn-206 

daily/).  This is a concern because maintaining and monitoring indices is not always part of 207 

the primary mandate of the developing world scientists who participate in the ETCCDI 208 

workshops and are involved in index development for their countries or regions. It should 209 

be noted however, that the Asia Pacific Network (APN; Manton et al, 2001), which has 210 

focussed on a specific region, has been successful in running repeat workshops that have 211 

allowed for the updating of indices in that region.   212 

iv. The potential loss of scientific information that results from providing only a limited 213 

number of pieces of information about the distribution of daily temperature and 214 

precipitation.  215 

v. Potential difficulties in characterizing the statistical distributions of many indices, which 216 

makes it more difficult to make reliable statistical inferences about things such as the 217 

presence or absence of trend in a time series of annual indices. 218 

vi. Consideration of specific impacts often requires information that relies upon simultaneous 219 

values of several climate variables. For instance, health impacts from heat waves depend 220 

upon temperature and humidity (and additional factors), information that cannot be 221 

recovered from standard indices. 222 

A further challenge is that the spatial coverage of index datasets remains far from being truly 223 

global, with significant fractions of the globe still under-sampled, for example, in Africa and South 224 

America (see Fig. 2a-c). Further challenges in the production of global datasets are also related to 225 

the choice of gridding framework in addition to parameter choices that are made within a chosen 226 

gridding method (e.g. Donat and Alexander, 2011). This adds additional uncertainty to long term 227 

variability measures and trend estimates (see Fig. 2d). 228 
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Figure 2: Annual trends in warm nights 

(TN90p) using different datasets for the 

periods indicated. The datasets are (a) HadEX 

(Alexander et al., 2006), (b) HadGHCNDEX 

(ETCCDI indices calculated from an updated 

version of HadGHCND (Caesar et al. 2006)) 

and (c) GHCNDEX (Donat and Alexander, 

2011). (d) represents the global average 

timeseries plots for each of the three datasets 

with associated 11-year running means. 

 

 229 
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The index approach also has several scientific limitations. One such limitation, for which a solution 230 

has been found, is the possibility that inhomogeneities could be introduced into index time series 231 

unintentionally, such as can occur in the case of threshold crossing frequency indices when 232 

thresholds representative of the far tails are estimated from a fixed observational base period (e.g., 233 

Zhang et al, 2005). Another limitation, which can also be circumnavigated, is that differences in the 234 

recording resolution of observational data can cause non-climatic spatial variations in threshold 235 

crossing frequency and trends (e.g., Zhang et al, 2009). A third limitation is that in a changing 236 

climate, the number of exceedances of thresholds based on a climatological base climate may 237 

saturate, e.g. exceedances may never or almost always occur under strong climate change. Thus, 238 

percentage exceedance indices are only useful for characterizing change in the distribution that is 239 

not too far from the base period (see e.g. Portmann et al., 2009). A further limitation is that the 240 

nature of index data, which typically provides only one value per year, may limit the range of 241 

possible approaches that can be used to analyze change in certain types of extremes. For example, 242 

long return period extremes (e.g., the intensity of the 20-year extreme daily precipitation event) 243 

can be estimated from the annual extremes that are recorded in HadEX, but the analyst can only do 244 

so using the so- called block-maximum approach to extreme value analysis, which only considers 245 

the most extreme of a series of values observed within a block of a defined length (e.g. the annual 246 

maximum). In contrast, it is often argued by statisticians that the so-called peaks-over-threshold 247 

approach, by which all values exceeding a given threshold are used in the analysis, may result in 248 

more confident estimates of long period return values since it has the potential to utilize the 249 

information about extremes that is available in a long time series of daily values more effectively 250 

than the block-maximum approach. It should be noted however, that the peaks-over-threshold 251 

approach is difficult to apply to large gridded datasets, such as the output from global climate 252 

models, because of the challenges associated with finding an automated procedure for reliably 253 

determining the appropriate threshold at each location in the grid. A further consideration is that 254 

most available index datasets do not currently provide the date (or dates) on which the extreme 255 

values were recorded. This creates a limitation when attempting to study the association between 256 

the occurrences of extremes in different variables or between climate extremes on the one hand 257 

and impacts on the other. It also limits the ability to study changes in the seasonality of extremes, 258 

and it impairs process based analyses of the conditions leading to recorded extremes. 259 

An additional limitation is that the block over which the annual extreme is calculated is generally 260 

not adjusted to match the annual cycle. For example, the annual maximum of daily maximum 261 

temperature is reported in HadEX for the calendar year at all locations. This is appropriate for mid-262 

latitude Northern Hemisphere locations, but creates a situation where the extreme temperature 263 

recorded during an extremely hot Southern Hemisphere summer could be recorded in different 264 

years for adjacent locations, which would have the effect of reducing the apparent spatial 265 

dependence between extremes at nearby locations. Also, there is the possibility that some 266 

persistent extreme events could be double-counted in the Southern Hemisphere, for example, if a 267 

single event spanning the days between two calendar years produced the warmest temperatures of 268 

the year in both calendar years. One can imagine similar concerns regarding precipitation.  269 
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As noted, methods have been developed to prevent inhomogeneities in indices that count 270 

exceedances beyond quantile based thresholds and to account for the effects of different data 271 

reporting resolutions (Zhang et al, 2005, 2009). Other limitations could be overcome by adding a 272 

modest number of additional indices to the “standard” ETCCDI list. For example, one could include 273 

within the suite of indices the r most extreme values observed annually for some small number r>1 274 

and not just the most extreme value annually, thereby enabling the application of the more 275 

efficient “r-largest” extreme value analysis techniques (e.g., Smith, 1986; Zhang et al, 2004). In 276 

addition, it would be appropriate to redefine the ETCCDI indices such that they describe annual 277 

extremes and counts that pertain to a year that is defined in a climatologically appropriate manner, 278 

where the definition of the year would depend upon location and parameter, taking into account 279 

the form of the annual cycle for the specific aspect of the parameter that is relevant for each index. 280 

It should be noted that the definition of the year has implications for many types of indices and not 281 

just annual extremes as discussed above.  As specific example is CDD (consecutive dry days, see 282 

Klein-Tank et al, 2009), an index that can show very large changes in climate models under future 283 

emissions scenarios (e.g. Tebaldi et al. 2006, Orlowsky and Seneviratne 2011). CDD calculated on 284 

the basis of the calendar year has a different interpretation in places where the climatological dry 285 

period spans the year boundary as opposed to places where the climatological dry period occurs in 286 

the middle of the year; while dry periods may be of comparable length in both types of places, CDD 287 

will tend to report them as being substantially shorter in the former. In contrast, a CDD index that 288 

was calculated from years that are defined locally in such a way that the climatological dry period 289 

occurs everywhere in the middle of the year would have a more uniform interpretation across 290 

different locations.  291 

There are a number of factors that limit our ability to evaluate how well models simulate indices by 292 

comparison against observed indices. These include observational limitations, such as the wide 293 

variation in the density and coverage of observing stations, the likelihood that there are few regions 294 

in the world where precipitation station density is sufficient to reliably estimate grid box mean 295 

precipitation on GCM and RCM scales (see discussion in Zhang et al., 2007),, the still relatively 296 

limited duration of satellite and other remotely sensed data products with high reporting frequency 297 

(e.g., Kossin et al. 2007; Lau et al 2008), and ongoing concerns about the homogeneity (e.g., Elsner 298 

et al. 2008) and calibration of remote sensing products. As a consequence, model evaluation often 299 

relies on proxies for direct observations, such as reanalysis products. This is a reasonable approach 300 

for variables such as surface temperature that are directly constrained by observations in 301 

reanalyses, but is more problematic in the case of variables such as precipitation which is generally 302 

not observationally constrained in reanalyses (the North American Regional Reanalysis, Messinger 303 

et al, 2006, is an exception; it uses precipitation observations to adjust latent heating profiles). 304 

Furthermore, the observational data streams assimilated in reanalysis data products are not 305 

consistent over time, e.g. because of the relatively short length of satellite data, which may affect 306 

their use for the assessment of climatic trends (e.g. Bengtsson et al. 2004, Grant et al. 2008). Taking 307 

these various limitations into account, models are found to simulate the climatology of surface 308 

temperature extremes with reasonable fidelity  (Kharin et al., 2007) on global and regional scales 309 

when compared against reanalyses, although there are uncertainties associated with, for example, 310 
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the representation of land-atmosphere feedback processes in models (Seneviratne et al, 2006). In 311 

contrast, intercomparisons between models, reanalyses, and large scale observational precipitation 312 

products such as CMAP (Xie et al, 2003) suggest large uncertainties in all three types of 313 

precipitation products; particularly in the tropics (e.g., see Figure 6 in Kharin et al, 2007) 314 

Scaling issues (e.g., differences between intensity, variability and representativeness of point 315 

observations from rain gauges or gridded observed precipitation versus the grid box mean 316 

quantities simulated by climate models; Klein-Tank et al, 2009; Chen and Knutson 2008), 317 

uncertainties in observational gridded products (Donat and Alexander 2011), and incomplete 318 

process understanding continue to limit the extent to which direct quantitative comparison can be 319 

made between station observations and models (Mannshardt-Shamseldin et al, 2010). It should be 320 

noted, however, that models of sufficiently high resolution may be capable of simulating 321 

precipitation extremes of comparable intensity to observed extremes.  For example, Wehner et al 322 

(2010) show the global model that they study produces precipitation extremes comparable to 323 

observed extremes at a horizontal resolution of approximately 60 km. However, most global 324 

models continue to operate at substantially lower resolutions, leading to ambiguities in the 325 

interpretation of projected changes in extremes. Nevertheless, precipitation change at large scales 326 

is determined primarily by changes in the global hydrological cycle that are reflected in changes in 327 

evaporation, atmospheric moisture content, circulation (which affects moisture transport and 328 

convergence), and energy and moisture budgets, providing a fundamental basis for the qualitative 329 

(in terms of the direction of change and its large scale features), if not quantitative (in terms of the 330 

absolute values of the changes and their detailed geographic patterns), interpretation of modelled 331 

precipitation changes. The scaling issue can sometimes be partially overcome transforming 332 

observed and simulated precipitation to dimensionless scales that can more readily be 333 

intercompared, such as has been done by Min at el (2011). A disadvantage of such transformations, 334 

however, is that the translation of extremes onto a probability or other type of relative scale may 335 

impede the physical interpretation of trends and variability. 336 

ii) Wind indices 337 

To date, temperature and precipitation indices have been studied most intensively. Indices of wind 338 

extremes, while of enormous importance in engineering applications, have received less attention, 339 

in part because of the greater difficulty in obtaining homogeneous high-frequency wind data. Wind 340 

records are often affected by non-climatic influences, such as development in the vicinity of an 341 

observing station that alters surface roughness over time. It has also been postulated by Vautard et 342 

al (2010) that large scale changes in vegetative cover over many land areas has altered surface 343 

roughness and that this may be an important contributor to the apparent stilling (reduction) of 344 

surface wind speeds in many mid-latitude regions (e.g., Zwiers, 1987; Roderick et al, 2007).  345 

An alternative to using direct anemometer observations of wind speeds is to consider a proxy that 346 

is based on pressure readings that are usually more homogeneous than wind speed observations. 347 

Several storm proxies currently being used are derived from pressure readings at single stations, 348 
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such as the statistics of 24-hourly local pressure changes or of the frequency of low pressure 349 

readings. These single station proxies relate to synoptic experience and reflect storminess indirectly 350 

as they seek to detect atmospheric disturbances (e.g. Schmith et al, 1998; Hanna et al, 2008;  Allan 351 

et al, 2009; Bärring and von Storch, 2004; Bärring and Fortuniak, 2009). Another approach to 352 

explore past storminess is to make use of the statistics of geostrophic wind speeds. Geostrophic 353 

wind speeds can be derived by considering mean sea-level pressure gradients in networks of 354 

reliable surface pressure records over homogenous mid-latitude domains, such as the north-east 355 

Atlantic and western Europe (e.g., Schmidt and von Storch, 1993; Alexandersson et al, 1998;). These 356 

records, which continue to be developed in the North Atlantic and European region (e.g., Wang et 357 

al, 2011) and are also being developed in the Australian regions (e.g., Alexander et al, 2011), are 358 

available for much longer periods of record than the more limited anemometer network. For the 359 

North Atlantic region for which they have been most extensively developed, they show 360 

predominately the effects of natural low frequency variability in atmospheric circulation on 361 

variations in storminess and extreme geostrophic wind speeds.  362 

Recently Krueger and von Storch (2011a) used a regional climate model to evaluate the underlying 363 

assumption that the extremes of geostrophic wind speed are indeed representative of surface wind 364 

speed extremes. They also considered the sensitivity of the proxy to the density of stations in the 365 

network, concluding that higher density networks should give more reliable estimates of wind 366 

speed extremes. Work is currently underway to evaluate the robustness of such proxies to 367 

instrumental error in pressure readings and to inhomogeneity in one or more of the surface 368 

pressure records that are used to derive the geostrophic winds. Further, a study that evaluates how 369 

well a number of single-station pressure proxies represent storminess has recently been completed 370 

(Krueger and von Storch, 2011b) and concludes that all single-station pressure proxies considered 371 

were linearly related to storm activity, with absolute pressure tendency being most strongly 372 

correlated.  373 

Another possibility for the construction of wind speed and storminess indices is provided by 374 

reanalyses, such as the NCEP (Kistler et al, 2001), ERA-40 (Uppala et al, 2005), or the 20th Century 375 

(20CR) reanalysis of Compo et al (2011), which is based only on surface observations and covers the 376 

period 1871-2008. In contrast with wind speed observations and recent extreme wind speed 377 

reconstructions from surface pressure readings (e.g., Wang et al., 2011), all reanalyses appear to 378 

show an increase in European storm indicators during the last few decades of the 20th century 379 

(Smits et al, 2005; Donat et al, 2011).  For tropical cyclones, the intensities of the storms (i.e., 380 

maximum near-surface sustained one-minute wind speeds) can also be estimated globally using 381 

satellite data, at least since the early 1980s (Kossin et al. 2007; Elsner et al. 2008). 382 

c. Role of external influences  383 

i) Temperature extremes 384 
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Considerable progress has been made in the detection and attribution of externally forced change 385 

in surface temperature extremes since the feasibility of such studies was first demonstrated by 386 

Hegerl et al (2004). Studies that detect human influence on surface temperature extremes are 387 

available on the global and regional scale, use a range of indices that probe different aspects of the 388 

tails of the surface temperature distribution including the frequency (e.g., Morak et al, 2011; Figure 389 

3, which also shows that human influence can be detected in the frequency of warm nights in most 390 

regions) and magnitude (e.g., Christidis et al, 2005, 2011; Zwiers et al, 2011) of extreme surface 391 

temperature events; results are robust across a range of methods and across both types of indices. 392 

Some studies use methods that rely on extreme value theory (e.g., Christidis et al, 2011; Zwiers et 393 

al, 2011), and are therefore best suited for studying change in the far tails of the temperature 394 

distribution, whereas other studies that consider less extreme parts of the distribution (Christidis et 395 

al 2005; Morak et al., 2011) appropriately use standard fingerprinting approaches (e.g., Hegerl et al, 396 

2007). Some studies (e.g., Christidis et al, 2011) are also able to separate and quantify the 397 

responses to anthropogenic and natural external forcing from observed changes in surface 398 

temperature extremes, thereby increasing confidence in the attribution of a substantial part of the 399 

observed changes to external forcing on global scales.  400 

There is the potential to further develop techniques in order to be able to conduct the analysis 401 

more fully within the framework of extreme value theory and more confidently separate signals by 402 

utilizing recent developments in the spatial modelling of extremes via so-called max-stable 403 

processes (e.g., Smith, 1990; Schlatter, 2002; Vannitsem and Naveau, 2007; Blanchet and Davison, 404 

2011). By working within the framework of extreme value theory, as has already been done in the 405 

recent studies of Christidis et al (2011) and Zwiers et al (2011), it should become possible to all 406 

attribute changes in the likelihood of extreme events to external causes, thereby contributing to the 407 

scientific underpinnings that will be required for event attribution (see the Community Paper lead 408 

by Stott et al). For example, Zwiers et al (2011) provide rough estimates of circa 1990s expected 409 

waiting times for events that nominally had a 20-year expected waiting time in the 1960s, showing 410 

that cool temperature extremes have become substantially less frequent globally, whereas warm 411 

temperature extremes have become modestly more frequent. A further area where statistics can 412 

make important contributions is in accounting for spatial dependence between extremes. Most 413 

work described above considers grid points or stations independently of each other. However, 414 

statistical space-time modelling can account for spatial dependence between parameters of 415 

extreme value distributions, for example, by setting prior expectations of spatial dependence that 416 

are updated with data. These methods can account for complex space-time structure of extremes 417 

and make use of information in data more completely (e.g., Sang and Gelfand, 2009, 2010; Heaton 418 

et al, 2010) 419 

A limitation of the studies that have been conducted to date is that they have been confined to the 420 

20th century, in part due to the design of the CMIP3 experiment which ended the historical 421 

simulations and the single forcing runs at 1999 or 2000, but more importantly, because suitable 422 

observational datasets providing broad coverage of annual temperature extremes have not been 423 

updated to the more recent decade (e.g., Alexander et al, 2006). Also, modelling groups 424 
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participating in CMIP3 generally were not able to make available large volumes of high frequency 425 

(daily or higher) output or ensembles of historical single forcing runs (e.g., runs with historical 426 

greenhouse gases or aerosol forcing only). Consequently, currently available studies that separate 427 

signals have only been performed with single climate models rather than with multi-model 428 

ensembles. All of these problems should be alleviated at least to some extent in the near future 429 

with the advent of updated research quality datasets, such as HadEX2 (Alexander and Donat, 2011), 430 

and the growing availability of CMIP5 simulations (Taylor et al, 2009) that are currently being 431 

completed by the climate modelling community and will make available high frequency output 432 

more broadly than their predecessors in CMIP3, enabling a more thorough exploration of model 433 

uncertainties.  434 

 435 

The studies available to date use only a limited number of models. Across many of these studies 436 

results suggest that the climate model simulated pattern of the warming response to historical 437 

anthropogenic forcing in cold extremes fits observations best when its amplitude is scaled by a 438 

                                                           
9
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Figure 3: (a) 1951–1999 observed decadal 

trend of TN90 (in % change per decade) based 

on a combination of HadEX (Alexander et al, 

2006) and additional index data from  Kenyon  

and Hegerl (2007). The zonal average of the 

observations (black line) and the spread of 

trends in an ensemble of CMIP3 
9
“ALL” 

forcings model simulated trends for the same 

period (green shaded area) is shown on the 

side of the plot. (b) The scaling factors (red 

markers) of observed changes projected onto 

the multi‐model mean fingerprint for the 

period 1951–1999. The “diamonds” indicate 

scaling-factors based the Kenyon and Hegerl 

(2007) dataset (labelled Duke in the legend), 

and the “triangles” indicate scaling-factors 

based on HadEX. Grey bars indicate 5–95% 

uncertainty ranges.  Regions in which results 

are detectable at the 5% significance level and 

where model simulated internal variability is 

consistent with regression residuals are 

indicated with an asterisk. Results indicate 

broad increases in the frequency of warm 

nights, and the detection of anthropogenic 

influence in the pattern of observed increases 

globally and in most regions. From Morak et al 

(2011). 
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factor greater than one (i.e., when the simulated warming signal is scaled up).  Conversely, the 439 

expected warming signal in extremes of warm daily maximum temperature extremes generally 440 

needs to be scaled down, and in fact, has only recently been detected in observations through the 441 

use of more sophisticated statistical techniques (Christidis et al, 2011; Zwiers et al, 2011). These 442 

results point to the possibility that the forcing and/or response mechanisms, including the 443 

possibility of feedbacks that operate differently during the warm and cold seasons and during 444 

different parts of the diurnal cycle (day versus night), may not be fully understood (e.g. Portmann 445 

et al, 2009) or accurately modelled. Recent examples include work by Seneviratne et al (2006, 446 

2010) and Nicholls and Larsen (2011) concerning the role of land-atmosphere feedbacks in the 447 

development of temperature extremes, and by Sillmann et al (2011) on the role of blocking in the 448 

development of cold temperature extremes in winter over Europe. 449 

It should be noted that not all extremes change in the same direction as the mean. One example for 450 

temperature is freeze-thaw cycles that occur when night-time low temperatures are below freezing 451 

but day-time highs are above freezing. The number of freeze-thaw cycles can have a considerable 452 

impact on infrastructure. One can imagine locations currently below a cold threshold such that 453 

freeze-thaw cycles currently never occur, but as climate warms such cycles start to occur and then 454 

become more frequent. Similarly, locations with a current climate just cool enough for freeze-thaw 455 

cycles to be common now could see large decreases with warming. Other extremes that could 456 

change in opposing directions include events that depend on both temperature and precipitation. 457 

Rain on frozen ground, for example, could actually become more common at sufficiently cold 458 

locations despite warming if more winter precipitation occurs, as is projected at mid-latitudes. 459 

Conversely locations that are just cool enough for rain on frozen ground to occur at present could 460 

see reductions in the frequency of occurrence of rain on frozen ground because rising temperatures 461 

would shorten or eliminate the annual period of frozen ground . Rain on snow and rapid snow melt 462 

could change in either direction for similar reasons. McCabe et al (2007) find decreasing trends in 463 

rain on snow throughout most of the Western US but increases at many of the coldest locations. 464 

Similarly, Ye et al (2008) find increasing rain on snow trends in European Russia where trends are 465 

driven by increased precipitation at the coldest locations but inhibited by reductions in snowfall 466 

days at warmer locations. Hamlet et al (2005) showed that even mean snowpack, which depends 467 

on both temperature and precipitation, can change in opposite directions at nearby locations: 468 

Western US precipitation increases tend to drive increasing historical snowpack trends at the 469 

coldest locations while temperature increases have driven decreasing snowpack trends at relatively 470 

warmer locations.    471 

ii) Precipitation extremes 472 

As is also the case with change in the mean state, in comparison with surface air temperature only 473 

limited progress has been made in determining the extent to which external influences on the 474 

climate system have influenced changes in the intensity or frequency of heavy or extreme 475 

precipitation. Various studies have found that extreme precipitation can have heavy tailed 476 

behaviour (with a shape parameter of around 0.2 when annual maxima of daily precipitation are 477 
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fitted with a generalized extreme value distribution).  While climate models simulate substantial 478 

precipitation extremes, it is not clear that they simulate daily intensities that are as heavy-tailed as 479 

observed. For example, Kharin and Zwiers (2005) do not find strong evidence for heavy tailed 480 

behaviour in the model that they studied, estimating shape parameters that are positive, but near 481 

zero. Averaging in space and time smoothes the tail behaviour recorded at weather stations but 482 

this reduces the applicability for impact studies. In addition, it is a real challenge to detect and 483 

attribute changes whenever the variable of interest has a positive shape parameter. In such cases, 484 

uncertainties grow rapidly with a slight change in the shape parameter and consequently very long 485 

time series are necessary. Thus there are substantial statistical challenges associated with the 486 

detection and attribution of the precipitation response to external forcing. 487 

Nevertheless, there is a modest body of literature that has investigated whether there is evidence 488 

that natural or anthropogenic forcing has affected global mean precipitation over land (e.g., Gillett 489 

et al, 2004; Lambert et al, 2005), the zonal distribution of precipitation over land (e.g., Zhang et al, 490 

2007) and the quantity of precipitation received at high northern latitudes (Min et al, 2008). Since 491 

the variability of precipitation is related to the mean (there is greater short term precipitation 492 

variability in regions that receive more precipitation), the detection of human influence on the 493 

mean climatological distribution of precipitation should imply that there has also been an influence 494 

on precipitation variability, and thus extremes. Hegerl et al (2004) found in a model-study that 495 

changes in moderately extreme precipitations may be more robustly detectable than changes in 496 

mean precipitation since models robustly expect extreme precipitation to increase across a large 497 

part of the globe. 498 

Min et al (2011) recently investigated this possibility, finding evidence for a detectable human 499 

influence in observed changes in precipitation extremes during the latter half of the 20th century. 500 

This was accomplished by transforming the tails of observed and simulated distributions of annual 501 

maximum daily precipitation amounts into a probability based index (PI) before applying an optimal 502 

detection formalism, thereby partly circumnavigating the scaling issues that are associated with 503 

precipitation. It should be noted however, that some strong assumptions are implicit in such 504 

transformations that are not necessarily verifiable. For example, it is implicitly assumed that forced 505 

changes in precipitation extremes result in comparable changes in PI at different scales, even 506 

though the mechanisms that generate extreme precipitation locally may be quite different from 507 

those that determine extreme events on climate model grid box scales and larger. Even with the 508 

transformation, it was found that a best fit with observations required that the magnitude of the 509 

large-scale climate model simulated responses to external forcing be increased by a considerable 510 

factor, with a greater increase in magnitude being required in the case of historical simulations that 511 

take into account a combination of anthropogenic and natural forcing (ALL forcing), than for 512 

simulations accounting only for the former (ANT forcing; see Figure 4). The discrepancy between 513 

scaling factors for ALL and ANT forcing is understandable given that the anthropogenically forced 514 

signal is still small, and that natural forcing (from changes in solar and volcanic activity) would have 515 

offset some of the response to ANT forcing, thereby weakening the ALL signal during the latter part 516 

of the 20th century. This leads to smaller expected changes in the ALL fingerprint, which are more 517 
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strong affected by noise and thus more difficult to detect, than the ‘cleaner’ signal from ANT 518 

forcing.  The on-line supplementary information accompanying Min et al (2011) includes an 519 

extensive set of sensitivity analyses that consider a broad range of uncertainties affecting their 520 

results. 521 

The cause of the 522 

discrepancies between 523 

observed and simulated 524 

changes in both mean and 525 

extreme precipitation 526 

remains to be fully 527 

understood. Explanations 528 

could include uncertainties 529 

in observations, forcing, or 530 

the representation of moist 531 

processes in models. The 532 

observations used in 533 

detection studies to date 534 

have been limited to the 535 

20th century, and have been 536 

based exclusively on station 537 

data. Thus coverage is 538 

limited to land areas only 539 

and in many regions, is 540 

inadequate due to 541 

limitations in observing 542 

network density, access to 543 

existing observations for the purposes of scientific research, or lack of capacity or mandate to 544 

facilitate the dissemination of observations. Remote sensing products may eventually solve these 545 

problems, but they have not been used in detection and attribution studies due to homogeneity 546 

concerns and lack of sufficiently long records, although they have been used in some cases for 547 

model evaluation (e.g., Kharin et al, 2007). Without broader coverage it is difficult to assess, for 548 

example, whether discrepancies in changes between models and observations are a global 549 

phenomenon or whether they are regional in nature, reflecting, for example, differences in 550 

moisture transport between models and the observed world. Topography, land-atmosphere 551 

coupling, and the representation of teleconnected patterns of variability all affect precipitation and 552 

are subject to uncertainty due to limited resolution in climate models or lack of complete process 553 

knowledge. In addition, wide uncertainty also remains in aerosol forcing (e.g., Forster et al, 2007), 554 

aerosol transport, the effect of aerosols upon the production of precipitation, and so on, which may 555 

affect both temperature extremes and precipitation extremes. Further, there are differences in the 556 

mechanisms of response to long- and short-wave forcing (e.g., Mitchell et al, 1987; Allen and 557 

 

 

 

Figure 4: Geographical distribution of trends of extreme precipitation 
indices (PI) for annual maximum daily precipitation amounts (RX1D) during 
1951–99. Observations (OBS); model simulations with anthropogenic (ANT) 
forcing; model simulations with anthropogenic plus natural (ALL) forcing. 
For models, ensemble means of trends from individual simulations are 
displayed. Units: per cent probability per year. From Min et al (2011; see 
paper for details). 
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Ingram, 2002) and thus the possibility that models may over- or under-simulate the response to 558 

one or the other type of forcing. 559 

3. Storms 560 

 561 

High energy cyclonic phenomena driven by latent heat release occur in the atmosphere on a 562 

number of scales, ranging from individual tornadoes to mesoscale convective complexes to tropical 563 

and extra-tropical cyclones. They often cause extensive damage directly by high wind speeds 564 

and/or heavy precipitation, and this may be compounded by the effects of flying debris, drifting 565 

snow, storm surges and high waves, and wind driven ice movements and other associated events. 566 

 567 

a. Extra-tropical cyclones 568 

Extratropical cyclones (synoptic-scale low pressure systems) exist throughout the mid-latitudes and 569 

are associated with extreme winds, sea levels, waves and precipitation. Climate models project 570 

changes in the large scale flow and reduced meridional temperature gradients as a consequence of 571 

greenhouse gas forcing, both of which affect extra-tropical cyclone development, and consequently 572 

changes in their number distribution (Lambert and Fyfe, 2006) and in the positioning of extra-573 

tropical storm tracks (Bengsston et al, 2006).  574 

Climate models represent the general structure of the storm track pattern reasonably well 575 

(Bengtsson et al., 2006; Greeves et al., 2007; Ulbrich et al., 2008; Catto et al., 2010) although 576 

models tend to have excessively zonal storm tracks (Randall et al., 2007). Detecting changes in 577 

extra-tropical cyclone numbers, intensity, and activity based on reanalysis remains challenging due 578 

to concerns about inhomogeneity that is introduced through changes over time in the observing 579 

system, particularly in the southern hemisphere (Hodges et al., 2003; Wang et al., 2006). Even 580 

though different reanalyses correspond well in the Northern Hemisphere (Hodges et al., 2003; 581 

Hanson et al., 2004), the observing system may also have influenced cyclone characteristics there 582 

as well (Bengtsson et al., 2004).   583 

Numerous studies using reanalyses suggest that the main northern and southern hemisphere storm 584 

tracks have shifted polewards during the last 50 years (e.g., Trenberth et al, 2007). Idealized studies 585 

(e.g., Brayshaw et al., 2008; Butler et al., 2011) suggest that greenhouse gas forcing from increases 586 

in well mixed greenhouse gases and decreases in stratospheric ozone may have played a role in 587 

these shifts. However, for the moment, studies of pressure-based indices (see above) (e.g., Wang et 588 

al., 2011 for the European/North Atlantic region, see Figure 5; Alexander et al, 2011 for south-589 

eastern Australia) are not able to provide corroborating evidence of a poleward shift in the principal 590 

storm track locations, since in both hemispheres, the domain over which pressure triangles needed 591 

to produce these indices are available is rather limited. Ongoing work with single station pressure 592 

proxies may help to alleviate this situation in the future. For example, a regional study over Canada 593 

that considered changes in observed cyclone deepening rates based on pressure tendencies at 594 
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stations (Wang et al, 2006) found qualitative agreement between reanalyses and station data 595 

suggesting a northward shift of the winter storm track over Canada. 596 

 
Figure 5: Example of an analysis is trends in seasonal storm indices derived from long surface pressure 
records. This figure shows contour maps of Kendall’s linear trend estimates (in unit per century) in seasonal 
storm indices defined as the 99

th
 percentile of sub-daily geostrophic wind speed estimated from pressure 

triangles for the period 1902–2007 in a domain the covers western Europe and the eastern North Atlantic. 
The contour interval is 0.3. The zero contours are shown in bold. Positive trends are shown in thin solid 
contours, and reddish shadings indicate at least 20% significance; and negative trends in dashed contours and 
bluish shadings. The darker shadings indicate areas with trends that are significant at the 5% level or lower. 
From Wang et al (2011). 

Detection and attribution studies examining whether human influence has played a role in changes 597 

in cyclone number, intensity or distribution have not yet been conducted. However, human 598 

influence has been detected in the global sea level pressure (Gillett et al, 2005; Gillett and Stott, 599 

2009) and in one study, in geostrophic wind energy derived from sea level pressure records (Wang 600 

et al, 2009). Gillett and Stott (2009) show that observed patterns of trends, which indicate 601 

decreases in high latitude sea level pressure and increases elsewhere, is robust when calculated 602 

from data for 1949-2009. Observed changes were consistent with expectations based on the model 603 

(HadGEM1) used in that study, suggesting that anthropogenic influence has contributed to both 604 

pressure decreases at high latitudes and increases at low latitudes. The mechanism for the latter is 605 

not well understood. Using an approach that would not formally be considered to a detection and 606 

attribution method, Fogt et al (2009) find that both coupled climate model simulated trends and 607 

observed trends in the Southern Annular Mode (SAM) lie outside the range of internal climate 608 

variability during the austral summer, suggesting that human influence has contributed to the 609 

observed SAM trends.  610 

b. Tropical cyclones 611 

About 90 tropical cyclones have been observed annually since the introduction of geostationary 612 

satellites. The global frequency has remained more or less constant over this period, albeit with 613 

substantial variability in the frequency of tropical cyclones and locations of their tracks within 614 

individual ocean basins (e.g., Webster et al., 2005; Kossin et al., 2010).  615 
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Tropical cyclones are typically classified in terms of their intensity according to the Saffir-Simpson 616 

scale as indicated by near-surface wind speed or central pressure. Long-term records of the 617 

strongest storms are potentially less reliable than those of their weaker counterparts  (Landsea et 618 

al, 2006). In addition to intensity, other impact-relevant characteristics of tropical cyclones include 619 

frequency, duration, track, precipitation, and the structure and areal extent of the wind field in 620 

tropical cyclones, the latter of which can be very important for damage through storm surge as well 621 

as the direct wind-related damage.  622 

Forming robust physical links 623 

between changes in tropical 624 

cyclone characteristics and 625 

natural or human-induced 626 

climate changes is a major 627 

challenge. Historical tropical 628 

cyclone records are known to be 629 

heterogeneous due to changing 630 

observing technology and 631 

reporting protocols (e.g., 632 

Landsea et al, 2004) and 633 

because data quality and 634 

reporting protocols vary 635 

substantially between regions 636 

(Knapp and Kruk, 2010). The 637 

homogeneity of the global 638 

record of tropical cyclone 639 

intensity derived from satellite 640 

data has been improved (Knapp 641 

and Kossin, 2007; Kossin et al, 642 

2007), but these records 643 

represent only the past 30-40 644 

years. Statistically significant 645 

trends have not been observed 646 

in records of the global annual 647 

frequency of tropical cyclones 648 

(e.g., Webster et al, 2005). 649 

Trends in frequency have been 650 

identified in the North Atlantic, 651 

but are contested (see below). 652 

Frequency trends have not been 653 

identified in other basins. Power 654 

dissipation appears to have 655 

increased in the North Atlantic 656 

 
Figure 6: Tropical Atlantic indices. Green-shaded curves depict global 
mean temperature (HadCRUT3 data set) and August–October main 
development region (MDR; 10° N–20° N, 80° W–20° W) SST anomalies 
(HadISST data set). Blue-shaded curves represent unadjusted tropical 
storm counts. Red-shaded curves include time-dependent 
adjustments for missing storms based on ship-track density. The 
curve labelled ‘>2-day’ depicts storms with a duration greater than 
2.0 days. Orange shaded curves depict US landfalling tropical storms 
and hurricanes (no adjustments). Solid black lines are five-year means 
(1878–2008); dashed black lines are linear trends. Vertical axis ticks 
represent one standard deviation. Series normalized to unit standard 
deviation. Only the top three series  have statistically significant linear 
trends (p = 0.05). Figure and caption are from Knutson et al (2010) 
and are based on Vecchi and Knutson (2008) and Landsea et al (2009). 



Extremes  21 

and more weakly in the western North Pacific over the past 25 years (Emanuel, 2007), but the 657 

interpretation of longer-term trends is constrained by data quality concerns. A similar metric, the 658 

globally accumulated tropical cyclone energy, has recently shown very large variations; it reached a 659 

high point in 2005, and subsequently declined to a 40-year low point (Maue, 2009). It remains 660 

difficult to robustly place tropical cyclone metrics for recent decades into a longer historical context 661 

(Knutson et al, 2010) because pre-satellite records are incomplete and therefore require the use of 662 

methods to estimate storm undercounts other biases; these methods have provided mixed 663 

conclusions to date (e.g., for the North Atlantic basin, see Holland and Webster, 2007; Landsea, 664 

2007; Mann et al, 2007; ; Vecchi and Knutson 2008; Landsea et al. 2009; Knutson et al, 2010; see 665 

also Figure 6).  666 

Our understanding of the factors that affect tropical cyclone metrics and their variation is 667 

improving but remains incomplete.  Anthropogenic forcing has been identified as a cause of SST 668 

warming in tropical cyclogenesis regions (e.g., Santer et al, 2006; Gillett et al, 2008). Potential 669 

intensity theory (Bister and Emanuel, 1998) links changes in the mean thermodynamic state of the 670 

tropics to cyclone potential intensity and implies that a greenhouse warming could induce a shift 671 

towards greater intensities.  This has received some support from dynamical hurricane model 672 

simulations (summarized in Knutson et al. 2010, Table S2).  These results suggest that human 673 

influence could have altered tropical cyclone intensities over the 20th century. However, as noted 674 

above, the available evidence concerning historical trends and detectable anthropogenic influence 675 

on tropical cyclone characteristics is mixed. A global analysis of trends in satellite-based tropical 676 

cyclone intensities has identified an increasing trend that is largest in the upper quantiles of the 677 

distribution (Elsner et al, 2008), and also most pronounced in the Atlantic basin.  However, this 678 

record extends back only to 1981 which is regarded as too short to distinguish a long-term trend 679 

from pronounced multi-decadal variability in the Atlantic basin.  Historical data show that tropical 680 

cyclone power dissipation is related to sea surface temperatures (SSTs), near-tropopause 681 

temperatures and vertical wind shear (Emanuel, 2007), but it has been suggested that the spatial 682 

pattern of SST variation in the tropics may exert an even stronger influence on Atlantic hurricane 683 

activity than absolute local SSTs (Swanson, 2008; Vecchi and Soden, 2007; Ramsay and Sobel, 684 

2011). This would have important implications for the interpretation of climate model projections 685 

(Vecchi et al, 2008).  Related to this, a growing body of evidence suggests that the SST threshold for 686 

tropical cyclogensis (currently about 26°C) would increase at about the same rate as the tropical 687 

SST increase due to greenhouse gas forcing (e.g., Ryan et al, 1992; Knutson et al, 2008; Johnston 688 

and Xie, 2010). This means, for example, that the areas of simulated tropical cyclogenesis would not 689 

expand along with the 26oC isotherm in climate model projections The most recent assessment by 690 

the World Meteorological Organization (WMO) Expert Team on Climate Change Impacts on Tropical 691 

Cyclones (Knutson et al., 2010) concluded that it remains uncertain whether past changes in any 692 

measure of tropical cyclone activity (frequency, intensity, rainfall) exceeds the variability expected 693 

through natural causes, after accounting for changes in observing capabilities over time.   694 

Based on a variety of model simulations, it is expected that global tropical cyclone frequency will 695 

either decrease or display little change as a consequence of greenhouse warming, but that there 696 
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will be an increase in mean wind speed intensity and in tropical cyclone rainfall rates over the 21st 697 

century (Meehl et al., 2007; Knutson et al., 2010). Projected changes for individual basins are more 698 

uncertain than global mean projections, as they show large variations between different modelling 699 

studies.  Studies which have compared tropical cyclone projections downscaled from different 700 

climate models using a single downscaling framework (e.g., Zhao et al. 2009; Sugi et al. 2009)  701 

suggest that at the regional scale, the uncertainties in tropical cyclone projections due to 702 

differences in projected SST patterns is substantial.  Concerning detection and attribution of 703 

tropical cyclone changes, in addition to the substantial uncertainty in historical records, a further 704 

challenge for identifying such predicted changes in observations is that the projected changes are 705 

typically small compared to estimated observed natural variability. Modelling studies (e.g. Knutson 706 

and Tuleya, 2004; Bender et al, 2010) suggest, on the basis of idealized simulations, that 707 

unambiguous detection of the effect of greenhouse gas forcing on tropical cyclone characteristics 708 

may still be decades off.  Detection of such an anthropogenic influence through the use of tropical 709 

cyclone damage statistics could require an even longer period of record (Crompton et al. 2011).  710 

c.  Tornadoes and other types of small scale severe weather 711 

Tornadoes typically occur during severe thunderstorms in which rapid vertical motion and the 712 

resulting convergence of angular momentum produces the potential for very high local vorticity. 713 

While our understanding of tornadoes has increased in recent years (e.g., Trapp et al, 2005), the 714 

body of research that is available globally on changes in tornado frequency and intensity remains 715 

limited. This is in part because the available data are inhomogeneous in time (e.g., Brooks, 2004) 716 

due to changes in reporting practices as well as changes in population and public awareness, and 717 

the introduction of technology such as Doppler radar, all of which undoubtedly affect detection 718 

rates. The assessments of Trenberth et al (2007) and Karl et al (2008) contain brief sections 719 

summarizing available research on tornadoes and other types of small scale severe weather. The 720 

scale of these phenomena implies that using current generation climate models any change in their 721 

likelihood of occurrence can only be inferred indirectly from climate models by considering changes 722 

in atmospheric conditions such as stability and vertical shear that affect their occurrence. For this 723 

reason, as well as the inadequacy of the observational record, detection and attribution studies 724 

have not been attempted. Projections of future changes in the incidence and intensity of tornadoes 725 

due to greenhouse warming and other climate forcings also remain uncertain, partly because 726 

competing influences on tornado occurrence and intensity might change in different ways. Thus, on 727 

the one hand, greenhouse gas induced warming may lead to greater atmospheric instability due to 728 

increases in temperature and moisture content,  suggesting a possible increase in severe weather, 729 

but on the other hand vertical shear may decrease due to reduced pole-to-equator temperature 730 

gradients (Diffenbaugh et al., 2008).  731 

4. Hydrological Extremes  732 

We discuss here floods and droughts, which are complex phenomena with large impacts that affect 733 

large numbers of people each year. Space and time scales can be large, particularly in the case of 734 
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droughts which can occur on sub-continental to continental scales and have extended durations of 735 

years or longer. In contrast, some types of flooding can be localized and of short duration, although 736 

flooding may also occur in large basins over an extended period of time (months). While floods and 737 

droughts generally represent opposite ends of the spectrum of variability in a region’s hydrological 738 

balance, it should be noted that the two phenomena are not completely mutually independent. For 739 

example, extreme precipitation events, with the possibility of local flash flooding, can occur during 740 

drought (e.g., Carmichael et al, 2010). 741 

a. Floods 742 

Floods are complex phenomena that are affected by various characteristics of precipitation. For 743 

example, freshet flooding is driven by meteorological and synoptic characteristics that control the 744 

timing and magnitude of energy fluxes into the snowpack, possibly confounded by the occurrence 745 

of rainfall. The frequency and intensity of floods can be altered by natural and human engineered 746 

and non-engineered land use effects on drainage basins, which makes the detection of climatic 747 

influences difficult. Human engineering induced effects include the possibility that impoundment of 748 

water may alter the local precipitation climatology (Hossain, et al, 2009). Storm surge events can 749 

cause coastal flooding, which may be exacerbated in estuaries if a storm surge event coincides with 750 

heavy discharge. Sea level rise (section 5) can also interact with storm surge events to increase the 751 

risk of coastal flooding (Abeysirigunawardena et al, 2011). 752 

 753 

The IPCC AR4 (Rosenzweig et al, 2007) and the IPCC Technical Paper VI based on the AR4 (Bates et 754 

al, 2008) concluded that documented trends in floods show no evidence for a globally widespread 755 

change in flooding (see also, for example, Kundzewicz et al, 2005), although there was abundant 756 

evidence for earlier spring peak flows and increases in winter base flows in basins characterized by 757 

snow storage. They also noted that there was some evidence of a reduction in ice-jam floods in 758 

Europe (Svensson et al, 2006). Subsequent research, which continues to be hampered by a limited 759 

availability and coverage of river gauge data, provides mixed results. Some studies suggest that 760 

there has been an increase in flooding over time in some basins (e.g., some basins in south-east 761 

Asia, Delgado et al., 2009; Jiang et al., 2008; and South America, Barros et al., 2004). However, 762 

many other studies suggest no climate-driven change (e.g., in northern Asia, Shiklomanov et al., 763 

2007; North America, Cunderlik and Ouarda, 2009; Villarini et al., 2009) or provide regionally 764 

inconsistent findings (e.g., in Europe, Allamano et al., 2009; Hannaford and Marsh, 2008; Mudelsee 765 

et al., 2003; and Africa, Di Baldassarre et al., 2010), or a change in the characteristics of flooding 766 

such as might be expected when a snowmelt driven flood regime switches, with warming, to a 767 

mixed snowmelt-rainfall regime (e.g., Cunderlik and Ouarda, 2009).   768 

 769 

River discharge simulation under a changing climate scenario is generally undertaken by driving a 770 

hydrological model with downscaled, bias-corrected climate model outputs. However, bias-771 

correction and statistical downscaling tend to ignore the energy closure of the climate system, 772 

which could be a non-negligible source of uncertainty in hydrological projections (Milly and Dunne, 773 

2011). Most hydrological models must first be tuned on a basin-by-basin basis to account for sub-774 
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grid-scale characteristics such as basin hypsometry, the degree of watercourse meander and other 775 

channel characteristics. Hydrologic modelling is therefore subject to a cascade of uncertainties from 776 

climate forcing, climate models, downscaling approach, tuning, and hydrological model uncertainty; 777 

these uncertainties remain difficult to quantify comprehensively. 778 

 779 

Recently, several studies have detected the influence of anthropogenically-induced climate change 780 

in variables that may affect floods. These include Zhang et al (2007) who detected human influence 781 

in observed changes in zonally averaged land precipitation, Min et al (2008), who detected human 782 

influence in northern high-latitude precipitation and Min et al (2011), who detected human 783 

influence in observed global scale change in precipitation extremes. Nevertheless, the extent to 784 

which such changes in extreme precipitation may lead to changes in flooding depend on the 785 

regional climate characteristics of the respective river catchments, as well as on changes in other 786 

climate variables such as soil moisture content and mean precipitation. While human influence has 787 

not yet been detected in the magnitude/frequency of floods, at least two studies using detection 788 

and attribution methodologies that incorporated output from hydrologic models driven with 789 

downscaled climate model output have suggested that human influences have had a discernable 790 

effect on the hydrology of the regions that they studied. Barnett et al (2008) detected 791 

anthropogenic influence in western US snowpack and the timing of peak-flow (see also Hidalgo et 792 

al, 2009), and Pall et al (2011), estimated that human influence on the climate system increased the 793 

likelihood of a fall 2000 flooding event that occurred in the southern part of the UK.  794 

 795 

Uncertainty is still large in the projected changes in the magnitude and frequency of floods. The 796 

largest source of uncertainties in hydrological projections is from differences between the driving 797 

climate models, but the choice of future emission scenarios, downscaling method, and hydrologic 798 

model also contribute uncertainty (e.g., Kay et al., 2009;  Prudhomme and Davies, 2009; Shrestha et 799 

al., 2011, Taye et al., 2011). The relative importance of downscaling, bias-correction and the choice 800 

of hydrological models as sources of uncertainty may depend on the selected region/catchment, 801 

the selected downscaling and bias-correction methods, and the selected hydrological models 802 

(Wilby et al, 2008). Chen et al (2011) demonstrated considerable uncertainty was caused by 803 

differing results between the several downscaling methods used to make hydrological projections 804 

for a snowmelt-dominated Canadian catchment. Downscaling and bias-correction are also a major 805 

source of uncertainty in rain-dominated catchments (van Pelt et al, 2009).  806 

b. Droughts  807 

Drought is a complex phenomenon that is affected by multiple climate variables on multiple times 808 

scales, , including atmospheric circulation, precipitation, temperature, wind speed, solar radiation, 809 

and antecedent soil moisture and land surface conditions. It can feed back upon the atmosphere via 810 

land-atmosphere interactions, potentially affecting the extremes of temperature, precipitation and 811 

other variables (e.g., Seneviratne et al, 2010; Nichols and Larsen, 2011). It can take multiple forms 812 

including meteorological drought (lack of precipitation), agricultural (or soil moisture) drought and 813 

hydrological drought (runoff or streamflow). There are few direct observations of drought-related 814 
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variables (e.g., Trenberth et al, 2007), including soil moisture, and hence drought proxies such as 815 

the Palmer Drought Severity Index (PDSI – Palmer, 1965; Dai et al, 2004; Heim, 2002) and the 816 

Standardized Precipitation Index (SPI – McKee et al, 1993; Heim, 2002) are often used to monitor 817 

and study changes in drought conditions. However, these indirect indices imply substantial 818 

uncertainties in respective analyses, and in particular the PDSI has several limitations.  Hydrologic 819 

drought can be observed/analysed via statistical analysis of discharge records (see e.g., Flieg et al, 820 

2006).   821 

 
Figure 7: Global distribution of linear trends in annual mean volumetric soil moisture for 1950-2000 obtained 
from the Variable Infiltration Capacity (VIC) hydrologic model when driven with observationally based forcing. 
The trends are calculated using the Mann–Kendall nonparametric trend test. Regions with mean annual 
precipitation less than 0.5 mm day

-1
 have been masked out because the VIC model simulates small drying 

trends in desert regions that, despite being essentially zero are identified by the nonparametric test. From 
Sheffield and Wood (2008; Figure 1). 

Assessments of changes in drought globally remain uncertain. Trenberth et al (2007), using the 822 

dataset of Dai et al (2004), found large increases in dry areas as indicated by the PDSI. However, it 823 

has been noted that the PDSI may not be comparable between diverse climatological regions (e.g., 824 

Karl, 1983; Alley, 1894).  The self-calibrating (sc-) PDSI introduced by Wells et al (2004) attempts to 825 

alleviate this problem by replacing fixed empirical constants with values based on the local climate. 826 

Using the sc-PDSI van der Schrier et al (2006) show that 20th century soil moisture trends in Europe 827 

are not statistically significant Using a more comprehensive land surface model than that implicit in 828 

either the PDSI or sc-PDSI, together with observation-based forcing,  Sheffield and Wood (2008) 829 

inferred that during 1950-2000 decreasing trends in drought duration, intensity and severity were 830 

prevalent globally (Figure 7). However, they also noted strong regional variation and increases in 831 

drought indicators in some regions, consistent with some regional studies. For example, Andreadis 832 

and Lettenmaier (2006), using a similar approach, found increasing trends in soil moisture and 833 

runoff in much of US in the latter half of 20th century. On the other hand, Dai (2011) found a global  834 
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 tendency for increases in drought 835 

based on various versions of the 836 

PDSI including the sc-PDSI and soil 837 

moisture from a land surface 838 

model driven observation-based 839 

forcing (Figure 8). Patterns of 840 

change obtained with those 841 

different techniques were largely 842 

consistent, with substantial spatial 843 

variability being a dominant 844 

characteristic. Nevertheless, 845 

inconsistencies between studies 846 

and indicators demonstrate that 847 

there remain large uncertainties 848 

with respect to global assessments 849 

of past changes in droughts, 850 

making it difficult to confidently 851 

attribute observed changes to 852 

external forcing on the climate 853 

system.   854 

Characterising hydrologic (i.e. 855 

runoff and streamflow) drought 856 

globally and regionally is also 857 

challenging due to difficulties in 858 

establishing robust and/or 859 

standardised quantitative drought 860 

descriptions over varied hydrologic 861 

regimes (e.g., Flieg et al, 2006). 862 

Some recent examples regarding 863 

analysis of streamflow records for 864 

detection of possible trends in low 865 

flow include work in Europe (Stahl 866 

et al, 2010), Canada (Ehsanzadeh 867 

and Adamowksi, 2007) and the UK 868 

(Hannaford and Marsh, 2006).  869 

Despite these uncertainties in global scale studies, there is often more agreement amongst regional 870 

studies of historical and current drought, consistent with the notion that circulation changes should 871 

induce regionally coherent shifts in drought regimes. For example, precipitation is strongly affected 872 

by the El Niño/Southern Oscillation in many parts of the world (Ropelewski and Halpert, 1987) 873 

including extremes (Alexander et al, 2009; Kenyon and Hegerl, 2010; Zhang et al, 2010) and the 874 

 
 
Figure 8: Maps of annual trends (red = drying) from 1950 to 2008 
in PDSI (change per 50 years) with potential evapotranspiration 
(PE) calculated using the (a) Thornthwaite and (b) Penman-
Monteith (PM) equation, and (c) annual trends in self-calibrated 
PDSI with the PM potential evaporation. Also shown (d) is the 
trend in top-1 m soil moisture content (mm/50 years) from 1948 
to 2004 simulated by a land surface model (CLM3) forced by 
observation-based atmospheric forcing (see Qian et al, 2006, for 
details). From Dai (2011). 
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resulting teleconnected circulation responses are often linked to the occurrence of precipitation 875 

deficits and drought in different regions (e.g., Folland et al, 1986; Hoerling and Kumar, 2003; Held 876 

et al, 2005; Hoerling et al, 2006; Giannini et al, 2008, Schubert et al, 2009) although internal 877 

atmospheric variability that is not forced by slowly changing boundary conditions can also create 878 

drought (e.g., Hoerling et al, 2009). Also, progress is being made in understanding the role of land-879 

atmosphere feedbacks that affect surface conditions (e.g., Koster et al, 2004; Seneviratne et al, 880 

2006, 2010; Fischer et al, 2007), although the rate of advance is limited by the availability of 881 

observational data. 882 

Christensen et al (2007) provide an assessment of regional drought projections based on 883 

simulations that were performed for CMIP3, noting consistency across models in projected 884 

increases in droughts particularly in subtropical and mid-latitude areas.  Uncertainty in drought 885 

projections stem from multiple sources. Perhaps the most fundamental of these is the uncertainty 886 

in the pattern of sea-surface temperature response to forcing, which is “El Niño like” in many 887 

models (Meehl et al, 2007), and which therefore cascades to other aspects of model behaviour 888 

through the teleconnected responses to SST change. A second source of uncertainty is associated 889 

with the possible alteration of land-atmosphere feedback processes, both as a consequence of 890 

change in the physical climate system and change in the terrestrial biosphere. A third source of 891 

uncertainty arises because the complexities of drought are at best incompletely represented in 892 

commonly used drought indices, leading to potential discrepancies of interpretation. For example, 893 

Orlowsky and Seneviratne (2011) show, using a more complete ensemble of CMIP3 simulations 894 

than was available at the time of Christensen et al (2007), that ensemble projections based on 895 

meteorological and agricultural drought indices can be quite different. Also, Burke and Brown 896 

(2008), considering several drought indices and two different ensembles of climate model 897 

simulations, show little change in the proportion of the land surface that is projected to be in 898 

drought based on the SPI, whereas indices that account for change in the atmospheric demand for 899 

moisture showed significant increases in the global land area affected by drought. It has been 900 

suggested that inferences based on climate model simulated soil moisture may be more robust 901 

than those based on other types of drought indicators. This is because model results are often 902 

found to be consistent after simple scaling (e.g., Koster et al, 2009; Wang et al 2009).   903 

5. Sea level  904 

Transient sea level extremes caused by severe weather events such as tropical or extratropical 905 

cyclones can produce storm surges and extreme wave heights at the coast. Extreme sea levels may 906 

change in the future as a result of both changes in atmospheric storminess and mean sea level rise, 907 

neither of which will be spatially uniform across the globe. Sea level change along coast lines may 908 

also be affected by some additional factors including glacial isostatic adjustment, coastal 909 

engineering, and changes in the Earth’s gravitational field (e.g., Mitrovica et al, 2010) arising from 910 

glacial and ice-sheet melting. Global mean sea level rose at an average rate of 1.7 [1.2 to 2.2] mm 911 

yr-1 over the 20th century, 1.8 [1.3 to 2.3] mm yr-1 over 1961 to 2003, and at a rate of 3.1 [2.4 to 3.8] 912 

mm yr-1 over 1993 to 2003 (Bindoff et al, 2007). Externally induced sea level rise occurs against a 913 
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backdrop of natural variability in sea level that must be taken into account when attributing causes 914 

to observed changes. For example, natural modes of variability such as the El Niño/Southern 915 

Oscillation (Menendez and Woodworth, 2010), the Pacific Decadal Oscillation 916 

(Abeysirigunawardena and Walker, 2008), the North Atlantic Oscillation (Marcos et al, 2009) and 917 

the position of the South Atlantic high (Fiore et al, 2009) all have transient effects on extreme sea 918 

levels. It is very likely that humans contributed to sea level rise during the latter half of the 20th 919 

century (Hegerl et al, 2007), and therefore more likely than not that humans contributed to the 920 

trend in extreme high sea levels (Solomon et al, 2007). Both mean and extreme sea level has 921 

continued to rise since the AR4 (Church et al, 2011; Menendez and Woodworth, 2010; Woodworth 922 

et al, 2011; see Figure 7).  923 

Meehl et al (2007) projected 924 

model based 90% ranges for sea 925 

level rise for 2090–2099 relative 926 

to 1980–1999 that varied from 927 

18–38 cm in the case of the 928 

SRES B1 scenario to 26-59 cm in 929 

the case of the A1FI scenario. 930 

These estimates accounted for 931 

ocean thermal expansion, 932 

glaciers and ice caps, and 933 

modelled aspects of ice sheets. 934 

It was also estimated that an 935 

acceleration of the flow of ice 936 

from Greenland and Antarctic 937 

could increase the upper ends of 938 

these ranges by 10–20 cm, and 939 

it was noted that insufficient 940 

understanding of ice sheet 941 

dynamics meant that a larger 942 

contribution could not be ruled 943 

out. Subsequent studies that 944 

extrapolate statistical models linking temperature and sea level have suggested somewhat higher 945 

ranges, for example, 0.75 - 1.90 m (Vermeer and Rahmstorf, 2009, based on SRES B1 to A1FI 946 

scenarios), and 0.90 - 1.30 m  (Grinsted et al, 2010, based on the SRES AIB scenario only).  947 

Projections of extreme sea level can be produced regionally in several ways. Often, such studies 948 

involve a combination of downscaling and hydrodynamic modelling (e.g., Deberhard and Roed, 949 

2008, who consider the European region and projected both decreases and increases depending 950 

upon location). Such an approach may not be feasible in all locations if the driving climate model 951 

does not simulate the phenomena that are likely to cause storm surge in a given region (e.g., 952 

tropical cyclones). In such cases it may be possible to construct statistical or idealized models of 953 

 
Figure 7: Estimated trends in (upper) annual 99th percentile of sea 
level based on monthly maxima of hourly tide gauge readings from 
1970 onwards, and (lower) 99th percentile after removal of the 
annual medians of hourly readings. Only trends significant at the 5% 
level are shown in colour: red for positive trends and blue for 
negative trends. From Menéndez and Woodworth (2010). The figure 
show that extreme sea levels have risen broadly, and that the 
dominate influence on that rise is from the increase in mean sea level. 
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tropical cyclone characteristics from observations that can then be perturbed to represent future 954 

conditions and to drive hydrodynamic models (e.g., McInnes, 2003; Harper et al, 2009; Mousavi et 955 

al. 2011). A further approach is to conduct sensitivity analyses to assess the relative impacts on 956 

mean sea level rise and wind speed increase (e.g., McInnes et al, 2009).  957 

6. Summary and Recommendations 958 

To be completed after the Open Science Conference 959 

960 
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