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Introduction  
The National Centers for Environmental Prediction (NCEP) of NOAA provides weather guidance 
to the United States National Weather Service (NWS), according to the demands of our customers 
and the public. In this effort, two significant components of NWS operations are combined:  wind-
wave predictions and NCEP’s UnRestricted Mesoscale Analysis (URMA). The approach is currently 
being developed at NCEP’s Environmental Modeling Center (EMC). 

From one side, NCEP’s operational wave guidance products are provided at global and regional 
scales, within both deterministic and ensemble-based systems, e.g. [1-4]. NCEP’s operational wave 
prediction systems are implementations of the WAVEWATCH III (WW3) model [5]. Currently the 
suite of operational wave systems does not include an assimilation nor an analysis component. From 
the other side, NCEP’s Real Time Mesoscale Analysis (RTMA) [6] and its extension, URMA, both 
provide the highest quality gridded surface analysis. The latter systems are under continuous 
development to improve the analysis and, more often, to add new analysis variables to match those 
forecasted in the National Digital Forecast Database (NDFD) [7].  

The expansion of URMA to include wave-height analyses is part of a broader effort, which aims at 
developing data assimilation and analysis components in NCEP’s operational wave models. The 
project involves EMC scientists from the marine and mesoscale atmospheric branches, and its 
objective is to offer a new, high-resolution significant wave height (Hs) analysis product for the 
URMA domains to its customers and the general public. 

The Wave-Height component of URMA 
URMA is an extended run of the RTMA, run six hours later in order to incorporate observations 
that arrive after the RTMA deadline. Both are high spatial (2.5km) and temporal (1h) resolution 
analysis systems for near-surface weather parameters. Their main component is NCEP’s Gridpoint 
Statistical Interpolation (GSI) system [8] applied in two-dimensional variational mode, to assimilate 
in-situ and satellite-derived observations. As the Hs is a two-dimensional field, the URMA may be 
naturally extended in order to be used for its analysis [9].  

In this framework, the GSI has been updated accordingly, in order to be compatible with the 
requirements for Hs analysis. A module for importing altimeter Hs measurements from three 
satellites (Jason-2, CryoSat-2 and Saral/Altika) has been introduced, including a multi-step quality 
control (QC) procedure based on the signal properties themselves, but also on the expected physical 
properties of the wave field. For the in-situ measurements of Hs (buoys and ships), the PREPBUFR 
format is used, as for the majority of conventional observational data for assimilation at NCEP. For 
all the data a gross error check is applied. In addition, for the extension of URMA to include the Hs 
analysis, the GSI code has been modified to accept variance and correlation lengths that vary in both 
spatial dimensions: latitude and longitude.   



In its initial development phase, the URMA-Wave prototype has been implemented for the coastal 
areas around the continental US. The background Hs is provided by NCEP’s global deterministic 
wave model system (Multi-1), which is interpolated to the URMA grid through a combination of 
linear and nearest neighbor interpolation. Multi-1 is forced with GFS winds and NCEP’s high-
resolution ice-analyses, as described in [1]. The background and error parameters of the covariance 
functions have been estimated based on two years of model and buoy data. The cycling of the Hs 
analysis is hourly, following the cycling of the rest of the URMA variables, and uses measurements 
and predictions from the last 3h before the analysis. 

Conclusions and Operationalization of URMA-Hs 
As this is a new effort for wave data analysis and assimilation at NCEP, important groundwork was 
done in all components of the DA system, including standardizing the satellite altimeter data stream, 
developing a data quality control process, updating the GSI system, exporting and interpolating the 
Hs from WW3 and estimating the background and error inputs necessary for the URMA-Wave. 
Most of these steps will also be used in other components of a broader wave DA system which are 
under development, including a local ensemble transform Kalman filter (LETKF) probabilistic wave 
analysis and multi-dimensional variational analysis systems. 

Currently, URMA-Hs runs only for the oceanic areas associated with URMA’s CONUS domain, but 
after tests of its components and validation of the analysis, it will also be implemented for all 
domains distributed under the NDFD, including Puerto Rico, Hawaii, Guam and Alaska. The new 
URMA-Hs product is scheduled to be launched operationally with the next RTMA upgrade cycle, 
currently scheduled to be completed by December 2016. 
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Introduction 
 

RTOFS (Real Time Ocean Forecast System)-Global is the first global eddy resolving ocean forecast 

system implemented operationally at National Centers for Environmental Prediction (NCEP) in close 

collaboration with US Navy.  It will soon be upgraded to Version 1.1. The core model and configuration 

were developed and validated at National Research Laboratory (NRL), using the Hybrid Coordinates 

Ocean Model (HYCOM) at 1/12° horizontal resolution coupled with Los Alamos Community sea ICE 

model (CICE). The RTOFS forecast system runs once a day and produces forecasts from the daily 

initialization fields produced at NAVOCEANO (NAVal OCEANographic Office) obtained using 

NCODA (Navy Coupled Ocean Data Assimilation), a 3DVAR data assimilation methodology 

(Cummings and Smedstad, 2013).  
 

The RTOFS forecasts were developed and validated at Environmental Modeling Center (EMC). Each 

day, a 2-day spin up starts with the analysis of 2 days before the present, using the ocean model in 

forecast mode forced with hourly NCEP’s Global Data Assimilation System (GDAS) atmospheric fluxes. 

This is continued from the present with an 8-day forecast cycle forced with 3-hourly momentum, 

radiation, and precipitation fluxes from NCEP’s Global Forecast System (GFS) fields for the next eight 

days.  
 

Following flux-corrections efforts at NRL (Metzger et al., 2013; Hogan et al., 2016), heat flux corrections 

are computed for the RTOFS v1.1 

configuration.  
 

SST errors and Net heat flux corrections 

Net heat corrections are computed to 

minimize the 5 day SST forecast error 

(Metzger et al., 2013; Hogan et al., 2016).  
 

The SST error for the first 5 days of the 

forecast - which starts 2 days before the 

present - was taken as the difference 

between the 5 day forecast and the analysis 

at the date of the 5 day forecast.  
 

 

SST error= SST (day 5 of forecast) – SST 

(analysis for day 5) 
 

The monthly mean space smoothed SST 5 day error (SST error) is converted to a surface heat flux 

applying a factor of -250 to the SST error to obtain the heat flux ((Metzger et al, 2013) 

 

Net Heat Flux correction = -250W/(° m
2
)   * SST error 

 

5-day SST error (°C, color bar -1 to 1°C ) 

July 2015 April 2015 

January 2016 October 2015 



This amount of heat would, for example, cool the upper near-surface ocean by 1°C till a depth of 26m. 

Since this analysis was done with forecasts 

during March 2015 to Feb 2016, effects of 

the 2015-2016 El Niño and others can be 

present in the correction fields. Flux 

correction estimates when applied will be 

based in SST errors from previous 

years/months; therefore, this method does 

not minimize the error for a particular 

year/month. 

The correction should compensate for a 

warm SST error in the summer hemisphere 

(Southern hemisphere for January and 

Northern hemisphere for July), which was 

found to be present in several years.  The 

warm narrow band north of the equator and 

cool band south of it was seen in other 

years, but its details may vary.  

The following comparisons with other years/products were done: 

a) Hogan et al. (2016)’s 5-day SST errors with GDAS for 2014 show generally consistent patterns.

b) Forecasts done with next future upgrades for GDAS/GFS (available as a parallel GDAS/GFS run)

result in small differences for flux corrections.

Simulations with flux corrections are being performed. Metzger et al. (2013) demonstrate an 

improvement in the SST error when the same simulations from which the flux corrections were obtained 

are redone with flux correction. When the flux correction obtained in a year is applied to simulations from 

other years it is to be expected that the improvement will be diminished.  In addition to flux corrections, 

residual flux corrections will be computed and applied if necessary.  

References:  

Cummings J.A.; Smedstad O-M., 2013. Variational data assimilation for the global ocean.  In Data Assimilation for 

Atmospheric, Oceanic and Hydrologic Applications, Park SK, Xu L. (eds.) II: 303–343. Springer: Berlin. 

Hogan, P.J; E.J. Metzger; D.S. Franklin; Z.D. Garraffo, 2016. Bias Estimates from Ocean Analyses and Forecasts 

with Different Atmospheric Forcing Products. American Meteorological Society Annual Meeting, New Orleans, Jan 

10-14, 2016. 

Mehra, A.; I. Rivin; Z. Garraffo; B. Rajan, 2015.  Upgrade of the Operational Global Real Time Ocean Forecast 

System, 2015. In: Research Actiivties in Atmospheric and Oceanic modeling,  Ed. Astakhova, WMO/World Climate 

Research Program  Report No. 12/2015. 

http://www.wcrpclimate.org/WGNE/BlueBook/2015/chapters/BB_15_S8.pdf 

Metzger, E.J;  O.M. Smedstad; P.G. Thoppil; H.E. Hurlburt; J.A. Cummings; A.J. Wallcraft; L. Zamudio; D.S. 

Franklin; P.G. Posey; M.W. Phelps; P.J. Hogan; F.L. Bub; and C.J. DeHaan, 2014.  US Navy Operational Global 

Ocean and Arctic Ice Prediction Systems. Oceanography  27(3):32–43 http://dx.doi.org/10.5670/oceanog.2014.66 

Metzger, E.J; A.J. Wallcraft; P. G. Posey; O.M. Smedstad; D. S. Franklin, Aug. 2013.  The switchover from 

NOGAPS to NAVGEM 1.1 atmospheric forcing in GOFS and ACNFS. NRL/MR/7320-13-9486  

July 2015April 2015

January 2016 October 2015 

Heat Flux correction (W/m2, color bar -250 to 250 W/m2 ) 



1 

 

Simulated global HYCOM (GLBa0.24) results from various ocean color 

forcings: Preliminary results from sensitivity analyses 
Hae-Cheol Kim

1,*
, Avichal Mehra

2
, Sudhir Nadiga

1
, Zulema Garraffo

1
, Seunghyun Son

3
 

1IMSG at NWS/NCEP/EMC, 2NWS/NCEP/EMC, 3CIRA at NESDIS 
Email: Hae-Cheol.Kim@noaa.gov; Phone: 301-683-3761 

Chlorophyll a (Chl-a) is one of the most commonly used biomass indicators in marine 

phytoplankton ecology.  Phytoplankton are primary producers of organic materials, and in the upper 

ocean, have their own internal physical and biogeochemical (BGC) dynamics. Along with photosynthesis, 

another major aspect of phytoplankton in the upper ocean is their role in attenuating radiant fluxes 

through optical processes such as absorption and scattering. Chlorophyll a and its attenuation 

characteristics can be estimated through remote sensing techniques. Despite the reality that observations 

are limited to 2-dimensional surface fields, remotely-sensed ocean color data (Chl-a concentration and the 

diffuse attenuation coefficients at 490 nm (Kd490) and for photosynthetically available radiation (KdPAR)) 

have been by far the most easily accessible and most frequently used products for providing an up-to-date 

state of marine primary producers (phytoplankton) and their photosynthetic activity (primary production). 

This bottom-up control is critical to understanding the dependent oceanic food webs in a region and the 

biogeochemical cycles relevant to global processes. In addition, data assimilation of ocean color products 

(e.g., SeaWiFS, MODIS, VIIRS) will provide a unique and timely opportunity to establish a path toward 

ecological forecasting through biogeochemical analyses and forecasts.  

As a component of initial efforts to test operational feasibility and capability, we investigated the 

effects of various ocean color products on ocean model behaviors and its upper ocean thermal structure. 

We used a 1/4
o
 Hybrid Coordinate Ocean Model (HYCOM; GLBa0.24 hereafter) with cylindrical 

(78.64°S – 66°S); recti-linear coordinate (66°S – 47°N); and. Arctic bipolar patch (>47°N). It has vertical 

coordinates employing 32 layers with following isopycnals in the deep sea, z-levels in the surface and a 

terrain-following σ-coordinate near coastal areas [1]. K-Profile Parameterization (KPP) [2] is used as a 

vertical mixing scheme. GLBa0.24 was forced by hourly atmospheric fluxes from NOAA’s Climate 

Forecast System Reanalysis (CFSR) [3]. Four numerical experiments were set up by combining three 

different ocean color products and two shortwave radiant flux algorithms (Table 1).  

Table 1. Various ocean color products used by RTOFS-Global for short wave radiant fluxes. 

Experiments Ocean color product Sensor Period Algorithms  

KparCLM Long-term climatological KdPAR [4] SeaWiFS 1997-2010 [5] 

ChlaCLM Long-term climatological Chl-a [6] SeaWiFS 1997-2010 [7] 

ChlaIND Interannual mean Chl-a [6] SeaWiFS Each year  

(2001 – 2010) 

[7] with no diurnal 

variation 

ChlaID Interannual mean Chl-a [6] SeaWiFS Each year  

(2001 – 2010) 

[7] with diurnal 

variation 
 

KparCLM is based on a 13-year long-term climatological KdPAR derived from SeaWiFS [4]. The 

algorithm to compute shortwave radiant fluxes is based on KdPAR [5]. ChlaCLM is based on a 13-year 

long-term Chl-a derived from SeaWiFS [6] and the shortwave radiation algorithm used in this experiment 

directly uses Chl-a to compute inherent (a: absorption coefficients) and apparent optical properties (Kd: 

downwelling attenuation coefficient; θ: solar zenith angle) [7]. ChlaIND and ChlaID use the same ocean 

color forcing, interannual mean of SeaWiFS Chl-a but the former experiment does not consider the 

diurnal effects of solar zenith angle, whereas the latter included diurnal changes of the Sun’s incident 

angle (0
o
 to 60

o
 as described in [7]). In summary, the comparison between KparCLM and ChlaCLM gives 

algorithmic differences; the comparison between ChlaCLM and ChlaIND gives effects of mesoscale 

variabilities; and the comparison between ChlaIND and ChlaID yields diurnal variabilities and short-term 
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scale effects. All experiments were initialized at January 1, 2001 and ran for 10 years. Surface 

temperature values are not constrained to data (no surface relaxation to climatology). 

Figures 1 and 2, respectively, represent a snapshot of differences in sea surface height (SSH) and 

sea surface temperature (SST) between the experiments one year after the initialization. Differences are 

noticeable in the areas of surface boundary currents, such as Kuroshio Current, Gulf Stream, Benguela 

Current, and Antarctic Circumpolar Current. The Equatorial Pacific also revealed basin-wide noticeable 

changes in both SSH and SST. It is noteworthy that the algorithmic difference (Figs.1a and 2a) created 

larger scale changes compared to other comparisons (e.g., changes in SSH in the Southern Ocean area; 

basin-wide changes in Pacific Ocean SST). Although it is apparent that the sensitivity of different ocean 

color products and optical algorithms made noticeable changes, more robust statistical analyses are 

required to confirm these synoptic findings in the comparisons. 

 
 

Fig. 1. Differences in SSH between KparCLM and ChlaCLM (a); ChlaCLM and Expt03.2 (b); and ChlaIND and 

ChlaID (c). 
 

 
 

Fig. 2. Differences in SST between KparCLM and ChlaCLM (a); ChlaCLM and Expt03.2 (b); and ChlaIND and 

ChlaID (c). 
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Satellite remote-sensing of ocean color (OC) parameters provides a means for broadly 

observing the foundation of the biological component of the world’s oceans.  Consequently, this 

data needs to be exploited for the analysis and prediction of ocean bio-physical processes and 

initiating the biogeochemical path, through primary productivity and associated processes and 

natural cycles, to ocean ecological forecasts. Operational integration/assimilation of OC fields 

(chlorophyll, Kd490, KdPAR) into NOAA’s operational ocean models has three fundamental 

requirements/conditions:  1) gaps in the observations need to be addressed, both in the current 

instance and for extended gaps; 2) the data being assimilated must have a long data record for 

establishing a robust statistical database that spans multiple seasons; and 3) for assimilation, the 

data must be for a predicted parameter.

In previous work [1], we demonstrated that a neural network (NN) technique can 

successfully fill both short and small gaps (several days and several grid points), as well as 

extended gaps (several months and global) in satellite OC measurements.  In this work, we show

that the other two principal requirements can also be satisfied using the NN technique. 

Consistent Ocean Color 

Three major OC data sets exist, produced by the SeaWiFS (09/1997 – 12/2010), MODIS 

(07/2002 – present), and VIIRS (1/2011 – present) sensors.  These three data sets have different 

error statistics; therefore, it is not a simple task to integrate them into a single consistent long-

term data set.  One possible approach is examined here.  Using three years of VIIRS data (the 

most accurate and recent measurement), we trained an ensemble of NNs.  Each of the NN 

ensemble members performs a mapping of relevant ocean variables (SST, SSH, and the upper-

ocean portions of vertical temperature and salinity profiles) to the logarithm of chlorophyll-a 

concentration, C, which can be expressed as: 

𝐿𝐶 = log10 𝐶 = 𝑁𝑁(𝑆𝑆𝑇, 𝑆𝑆𝐻, �⃗� , 𝑆 , 𝑙𝑎𝑡, 𝑙𝑜𝑛, 𝑑𝑜𝑦)   (1) 

where �⃗�  𝑎𝑛𝑑 𝑆  are the upper-ocean portions of the temperature and salinity profiles, and doy is 
the day of the year.  Using a logarithm of C as the NN output, rather than C, produces a more
accurate NN approximation and extrapolation of VIIRS data.  When training the NNs, the mean 
square error function is used; however, this error function is optimal for normally distributed 
data. Chlorophyll data have an almost log-normal distribution (see Fig. 1); thus, log10 𝐶 is nearly
normally distributed (Fig.1).  Using three years of VIIRS data for training with log10 𝐶 as the NN 
output produced an ensemble of NNs capable of stable long-range extrapolation of chlorophyll 
values.  

For signatures of upper-ocean dynamics this study employs satellite-derived surface variables 

(sea-surface temperature (SST), sea-surface height (SSH)), and gridded ARGO salinity and 

temperature profiles of the top 75m depth. Chlorophyll fields from NOAA’s operational Visible 

Imaging Infrared Radiometer Suite (VIIRS) are used.  The NNs are trained using data for three 

years (2012 through 2014) and assessed for a period of 10 years (2005 through 2014).  To reduce 

noise in the data and to obtain a stable computation of the NN Jacobian for sensitivity studies 

and data assimilation [2], an ensemble of NNs was constructed.  Results are assessed using the 



Fig.1 Probability density function for C (left panel and for 

ln 𝐶 (right panel) shown by solid lines.  In both panels, 

dashed lines show normal distribution with the same 

means and standard deviations. 

Fig.2 Correlation (left panel) and RMS differences (right panel) between C produced by ensemble of NNs (trained on 3 years of VIIRS data) 

and C observed by VIIRS (black curves)), MODIS (red curves), and SeaWiFS (green curves).   

root-mean-square error (RMSE) metric and cross-

correlations between observed chlorophyll fields and 

NN output.  Chlorophyll measurements from the 

three different OC sensors (SeaWiFS, MODIS, and 

VIIRS) available during the validation period were 

used.  Fig. 2 presents the validation results.  The 

correlations between the NN-generated and observed 

C decrease slightly from ~0.85 to ~ 0.75 when 

moving away from the training interval (2012 

through 2014).  RMS differences, however, do not 

change significantly.  Results for all three used 

satellite sensors are very consistent. It means that 

NN generated C can serve as consistent long term 

OC data for different uses, including assimilation in 

to ocean models.   

.

Assimilating ocean color parameters into ocean models 

OC parameters are not prognostic variables in current oceanic models; therefore, OC 

assimilation requires the coupling of a biochemical component or introducing an observation 

operator relating C to ocean prognostic variables into the data assimilation system.  The NN 

presented in Eq. (1) can serve as such an operator.  The Jacobian of NNs (Eq. 1) can relate 

innovations in C to innovations in ocean prognostic variables in the data assimilation system [2]. 
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Satellite sea-surface salinity (SSS) observations provide a new means for constraining an important state 

parameter in numerical ocean models. The benefits of assimilating satellite SSS observations include 

improved model surface density, near-surface convection, and thermohaline circulation. NOAA’s Real-

Time Ocean Forecast System (RTOFS)-Global [1] employs an eddy-resolving 1/12
th
-degree 

(approximately 9 km horizontal resolution) Hybrid Coordinate Ocean Model (HYCOM) [2]. In the 

current operational configuration, the RTOFS-Global sea-surface salinity is relaxed to Polar Science 

Center Hydrographic Climatology version 3.0 (PHC3) SSS fields [3]. Experiments that separately use 

satellite SSS data and the PHC3 SSS climatology have been conducted to assess the impact of satellite 

surface salinity measurements on simulated upper-ocean salinity, temperature, and sea-surface height 

fields. 

The first phase of these experiments employs a lower-resolution (1/4
th
-degree horizontal resolution)

HYCOM model. Nine experiments have been performed (Table 1). In the control run, sea-surface salinity 

is relaxed to an annual cycle of climatological monthly-mean values of SSS (PHC3 climatology). Two 

sets of cases are then used to explore the model’s sensitivity to constraining SSS to satellite 

measurements, both in terms of relaxation strength and satellite data update interval using monthly-mean 

and nine-day-mean satellite SSS data from the European Space Agency’s Soil Moisture – Ocean Salinity 

(SMOS) mission [4]. Relaxation strength is modified by changing the e-folding time (30 × Hm/Hs days), 

where Hm is the mixed-layer depth and Hs is a reference depth.  Greater Hs leads to a shorter e-folding 

time scale, increasing the constraint on surface salinity by more quickly relaxing surface salinity to the 

specified SSS reference field. 

Table 1.  List of experiments 

Case Relaxation Reference SSS Hs (relaxation strength) 

PHC_CL (control) PHC monthly-mean climatology 15 m 

SMOS_MN_15M SMOS monthly-mean 15 m 

SMOS_MN_45M SMOS monthly-mean 45 m 

SMOS_MN_75M SMOS monthly mean 75 m 

SMOS_MN_105M SMOS monthly mean 105 m 

SMOS_9D_15M 9-day mean SMOS 15 m 

SMOS_9D_45M 9-day mean SMOS 45 m 

SMOS_9D_75M 9-day mean SMOS 75 m 

SMOS_9D_105M 9-day mean SMOS 105 m 

The results show that the use of satellite SSS data reduces the root-mean-square error (RMSE) of 

modelled SSS, referenced to SMOS observations (Figs.1a-d). The improvement of SSS is more 
significant when model SSS is more tightly constrained to observations. On the other hand, increasing 
data update frequency by using the 9-day-mean SMOS data slightly increases the RMSE of SSS generally 

everywhere. For the equatorial band 5°S - 5°N, more tightly constraining SSS produces clear and more 

intense heating along the thermocline in each of the ocean basins (most notably in the Pacific) with the 
exception of the far western Atlantic, which experiences stronger cooling. The additional signal from 



increasing the SSS update rate intensifies the monthly-update heating signal along the thermocline, except 

in the Atlantic, where the additional signal is the opposite of the monthly signal, cooling along most of 

the thermocline. With more tightly constrained model SSS, salinity is generally fresher everywhere
within the 5°S - 5°N equatorial band, except for the eastern Pacific, not including the core of the cold 
tongue. Intense freshening occurs in the western Pacific, with narrow bands of comparably intense 
freshening in the Pacific cold tongue and far western Atlantic regions. The freshening seen in the western 
Atlantic is potentially associated with better representation of freshwater influx from major South 
American rivers. Increasing the SSS update rate increases salinity relatively uniformly nearly everywhere 
in the equatorial band, with some narrow intensification in the far eastern and far western portions of each 
basin. In general, incorporating satellite SSS data improves modeled sea surface height anomalies in the 
mid-latitude North Atlantic and North Pacific regions. 

Figure 1.  Root mean square error (RMSE) change – SMOS monthly-mean SSS data cases versus control 

case using PHC SSS climatology, referenced to SMOS observations, with increasing constraint to 

observed SSS:  Hs = a) 15m, b) 45m, c) 75m, and d) 105m. 

In terms of constraining models, models have long had a good initial temperature state but not a good 

initial salinity state. While satellite SSS observations improve the situation, the number of in situ 

subsurface observations remains inadequate. Modeling needs a mechanism for constraining subsurface 

salinity values; consequently, research needs to explore not only the use of satellite SSS to constrain 

modeled surface values but also how to extract/project meaningful values for the upper-ocean. 
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1. Introduction
A number of international organizations are currently running global Operational Ocean Forecast

Systems in near­real­time modes. The daily nowcast and forecast data sets for a variety of oceanographic 
prognostic parameters are now available to the public through large data servers. Ongoing studies 
conducted as part of the GODAE OceanView Class­4 intercomparison (Ryan et al., 2015) are 
demonstrating that these OOS offer complimentary predictive skills. There is also well­documented 
literature that shows combining multiple forecasts using simple combinations can help to substantially 
increase accuracy (or reduce error) of such forecasts (Clemen, 1989, Galmarini et al., 2004). 

A previous study (Spindler, Mehra, Tolman 2013) employed simple and weighted means and k­means 
clustering algorithms (Hartigan, 1975; Arthur and Vassilivitski, 2006) to improve nowcast error and bias in 
SST by processing a month of nowcast fields from five global OOS. This study is an extension of that work 
into the feasibility of applying simple numerical techniques as well as more sophisticated resampling 
methods to four global OOS (UKMET GloSea5, US Navy HYCOM, Mercator­Ocean Global, and NCEP 
Global RTOFS) that offer near­real­time nowcast and forecast data to assess the potential for reducing error 
and bias in both the current ocean state and forecasts of global SST and North Atlantic potential 
temperatures to depths of 500 m. 
2. Method

Nowcasts and 6 days of forecasts from the member models were processed daily, using 30 prior days of
model data to feed into the clustering algorithm. All members were interpolated to the reference data set 
grid. The global SST ensemble used Nearest Neighbor KD­Tree interpolation, whereas bilinear interpolation 
both horizontally and vertically was used for the regional ensemble. The external reference field for the 
global SST was GHRSST at 1/10° resolution, and FNMOC High Resolution Ocean Analysis for GODAE was 
used for the regional ensemble. Three ensemble methods were compared: simple average, weighted 
average (using inverse RMSE as the weight), and K­Means cluster­based weighted averaging (which also 
used inverse RMSE as the weight). Daily RMSE, Bias, and Cross Correlation was computed for both 
ensembles. For the regional model with depth­dependent fields, vertical temperature profiles were extracted 
and matched against ARGO profiles used in the GODAE Class­4 intermodel comparison project. 
3. Results

Figure 1.  Global SST Ensemble:  
RMSE, Bias, and Cross Correlation 
statistics analyzed from one month of 
model runs.  All three methods resulted 
in reductions in RMSE, improvements in 
cross­correlations, and with the 
ensemble bias remaining within the 
envelope of the members' bias values. 
The global SST K­Means ensemble 
exhibited the best improvements, with 
nowcasts and forecasts showing about 
a 30% improvement in RMSE, 
mid­range bias, and about a 10% 
improvement in the cross­correlation. 



Figure 2:  Global SST Ensemble:​  Taylor Diagram of 
the model members and ensemble methods for the 144 
hour forecasts for the month of October, 2015.  All 
points have been normalized by the standard deviation 
of the observations. 

Blue: Model members 
Red: simple and weighted ensemble 
Black: K­Means ensemble 

The diagram shows significant reductions in the spread 
of the ensemble RMSE as well as improved 
cross­correlations of the ensemble forecast as 
compared to the individual member forecasts.  Of the 
three ensemble methods, the K­Means ensemble 
shows the lowest RMSE spread and the highest 
cross­correlation.  The model member forecast spread 
in RMSE was found to increase over the forecast 
period at a faster rate than the ensemble RMSE 
spread. 

Figure 3:  Regional North Atlantic Ensemble: 
GODAE Class­3 ARGO temperature profiles are 
compared to co­located profiles extracted from the 
Regional Ensemble.  The upper right panel shows 
the locations of all of the profiles, the lower right 
panel shows the number of profiles per day over the 
course of the month. RMSE of the ensemble 
profiles showed improvement, but remained just 
within the envelope of the member values. 
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