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Ensemble assessment using the TIGGE database

Laurent Descamps, Carole Labadie, Alain Joly, Philippe Arbogast,
CNRM-GAME, Météo-France-CNRS, Toulouse

Ensemble forecasting has now become an important component of Numerical Weather Prediction.
Several major meteorological centres have been running operational Ensemble Prediction Systems
for years. Here, the purpose is to describe the Météo-France global ensemble forecasting system
PEARP (Prévision d’Ensemble ARPEGE) designed for the short-range (from 72 to 108 h) probabilistic
prediction and to present an evaluation of PEARP along with other ensembles using the TIGGE
database (Bougeault et al., 2010).

The PEARP system

The operational version of PEARP is based on the ARPEGE model with an horizontal spectral
truncation of T538 and a stretching factor of 2.4. The finer horizontal resolution is 15 km over
France. There are 65 levels on the vertical up to a height of 50 km. The ensemble size is 35 members
including a control member.

The initial perturbations of PEARP are built by combining the Météo-France ensemble data
assimilation system AEARP (Berre et al., 2007) running at a coarser resolution (6 members, T399, no
stretching) with singular vectors computed over different areas and with different optimization times
and norms.

“Multi-physics” approach is used to represent model uncertainties. 10 different physical parametriza-
tion sets, including the ARPEGE operational physical package, have been chosen (Descamps et al,
2011).

Assessment of PEARP and other TIGGE ensembles

We present here an objective assessment of PEARP and four ensemble prediction systems: the UKMO
ensemble prediction system (MOGREPS), the Canadian Meteorological Center (CMC) ensemble pre-
diction system, the NCEP Global Ensemble Forecast System (GEFS) and the ECMWF ensemble
prediction EPS. So far, most of the studies using the TIGGE database primarily have focused on
medium-range prediction. The evaluation is here dedicated to short and early medium-range forecast.

Evaluation is provided for two synoptic variables, 500 hPa geopotential height, and 850 hPa temper-
ature. Both variables are interpolated to a 1.5◦ latitude-longitude regular global grid using the interpo-
lation routines provided by the TIGGE data portal (see the TIGGE portal at http://tigge.ecmwf.int)
and run over a one-month period (September 2010).

A bootstrap resampling technique (Efron and Tibshirani (1993)) is applied to estimate confidence
intervals (5%-95%) for the different scores. Our procedure is the same as the one used in Candille et
al. (2007). We recompute the scores 10000 times with a sample of realizations randomly extracted,
with replacement, from the original dataset.

A perfectly reliable ensemble and the observations are supposed to have the same climatology.
In other words, the rank histogram, also known as the Talagrand diagram, is supposed to be flat.
The delta score measures the departure from flatness. Fig 1 displays delta scores for the five global
ensembles considered in this study. The results present common features in the sense that the relia-
bility increases with lead-time for all the ensembles and for both variables considered here. For both
variables CMC ensemble appears as the most reliable one, followed by PEARP except at very short
ranges for the 500 hPa geopotential height.
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Figure 1: Global “delta” scores against radiosounding observations for a 1-month period for 500 hPa
height (left) and 850 hPa temperature (right)
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Figure 2: Global Brier Skill Scores scores against radiosounding observations for a 1-month period
and for 500 hPa height (left) and 850 hPa temperature (right)

The Brier score measures a distance between the ensemble pdf and the observations. Although
Brier score account for both the reliability and the resolution, it is dominated by the resolution term.
A perfect ensemble has a Brier Skill Score (BSS) equal to 1. Fig 2 presents the BSS for the same
ensembles and over the same period. Four among the five ensembles are very close with respect to the
magnitude of the error bars. ECMWF ensemble seems to outperform the other ones except at very
short ranges where PEARP behaves well.

References

Berre, L., O. Pannekoucke, G. Desroziers, S. E. Stefanescu, B. Chapnik, and L. Raynaud, 2007: A variational
assimilation ensemble and the spatial filtering of its error covariances: increase of sample size by local spatial
averaging. ECMWF Workshop on Flow-dependent aspects of data assimilation, Reading, 151–168.

Bougeault, P., et al., 2010: The Thorpex Interactive Grand Global Ensemble (TIGGE). Bull. Amer.
Meteor. Soc., 91, 1059–1072.
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Stratocumulus parameterization is implemented in the operational Global Spectral Model (GSM) of the 

Japan Meteorological Agency (JMA) to represent subtropical marine stratocumulus clouds off the western 
coast of continents. This parameterization is designed to work under the conditions of a strong inversion 
layer, and diagnoses the cloud fraction as a function of inversion strength. It normally has a positive effect 
that makes the radiation budget in regions of subtropical marine stratocumulus cloud more consistent with 
observed values (Kawai and Inoue, 2006). However, it eventually causes spurious clouds over dry regions 
(such as the Sahara and inland North America) and in dry conditions over the Sea of Japan because no 
information on water vapor is considered in the conditions under which the scheme is operated. Shimokobe 
(2012) showed that the addition of a new relative humidity threshold to the conditions reduces the 
incidence of spurious clouds and mitigates low-temperature bias in the lower troposphere with the 
low-resolution (TL319L60) global data assimilation and forecast system. In this study, the effects of the 
modification (in which a relative humidity threshold of more than 80% is added to the conditions) were 
investigated in a high-resolution (TL959L60) experiment. The threshold value of 80% was selected so that 
necessary subtropical marine stratocumulus clouds are maintained as much as possible and spurious clouds 
are eliminated as appropriate. Here, the previous model is referred to as CNTL, and the modified model is 
referred to as TEST. 

Figure 1 shows cloud forecasts in CNTL and TEST around Japan. The spurious cloud by the 
stratocumulus scheme over the Sea of Japan seen in CNTL correctly disappears in TEST in comparison 
with visible image of MTSAT. 

Figures 2 to 4 show the results obtained from global data assimilation and the forecast system with the 
same implementation as operational. Figure 2 indicates differences at a forecast time of 12 hours between 
TEST and CNTL averaged for August 2011 at 00 UTC. It can be seen that the frequency of stratocumulus 
scheme operation in TEST decreases in dry regions as intended. In addition, surface downwelling 
shortwave radiation grows and the temperature in the lower troposphere increases in areas where the 
stratocumulus scheme operation is suppressed. Figure 3 shows monthly average temperature differences at 
850 hPa between radiosonde observations and the 12-hour forecast for August 2011 at 00 UTC. For CNTL, 
the model temperatures at 850 hPa are lower than the radiosonde observations at many stations. For TEST, 
however, the model temperatures are close to the observed values as per the differences seen in Figure 2. 

Figure 4 shows the improvement ratio of TEST compared to CNTL in terms of the root mean square 
error (RMSE) of forecast values against analysis for forecasts covering periods from one to eleven days in 
August 2011 and January 2012. Significant positive impacts are seen on temperature at 850 hPa for all 
regions in forecast periods exceeding three-days forecast time during both periods. The RMSEs of other 
variables are also improved or neutral. These 
results are consistent with those of the 
low-resolution experiment conducted by 
Shimokobe (2012). This modified model has 
been in operation since December 18, 2012. 

 
References 
Kawai, H. and T. Inoue, 2006: A simple 

parameterization scheme for subtropical 
marine stratocumulus. SOLA, 2, 17 – 20.  

Shimokobe, A., 2012: Improvement of the 
Stratocumulus Parameterization Scheme 
in JMA’s Operational Global Spectral 
Model. CAS/JSC WGNE Research 
Activities in Atmospheric and Oceanic 
Modelling, 42, 4.17 – 4.18. 

 

 
Figure 1: Cloud at a forecast time of 18 hours in TEST (top) and 

CNTL (bottom) around Japan on April 6, 2011 at 06 UTC. The 
panels on the left show the frequency of stratocumulus scheme 
operation in integration time steps from the previous six hours, 
those in the center show simulated visible cloud images of the 
GSM and that on the right shows MTSAT visible imagery. 
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Figure 4: Improvement ratios (%) of TEST to CNTL in the RMSEs of forecasts 

against analysis for 1-11 day forecasts in August 2011 (top) and January 2012 
(bottom).  The horizontal axis represents the number of forecast hours. The 
graph labeled “Psea” shows surface pressure, “T850” shows temperature at 850 
hPa and “Z500” shows 500 hPa geopotential heights. The green, brown, red and 
blue lines show the forecast improvement ratio for the global, Northern 
Hemisphere, tropical and Southern Hemisphere regions, respectively. Lines 
appearing in the upper (yellow) area indicate reduced RMSEs. The dots on the 
score lines represent statistical significance. 

 
Figure 3: Monthly average bias of temperature [K] at 850 hPa against radiosonde observations for a forecast time of 12 

hours in North America for August 2011 at 00 UTC. Observation stations with a bias difference between TEST and 
CNTL exceeding 0.4 K are circled in red. 

 

 
 

 
Figure 2: Differences between TEST and CNTL (TEST-CNTL) at a forecast time of 12 hours in North America for August 

2011 at 00 UTC. (a) Frequency of stratocumulus scheme operation in integration time steps from the previous six hours, 
(b) surface downwelling shortwave radiation [W/m2], (c) temperature [K] at 925 hPa, (d) temperature [K] at 850 hPa. 
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Introduction 

The European Centre for Medium-Range Weather 

Forecasts (ECMWF) developed the Extreme 
Forecast Index (EFI; Lalaurette 2002; 2003) and a 

revised version (EFIR; Zsótér, 2006) with weighted 

tails of probability distribution. Both types are capable 
of indicating the potential scale of extreme weather 

events. EFI and EFIR values are applied in JMA’s 
operational one-month ensemble prediction system 

(EPS) (Harada and Takaya 2012). This report 

describes 850-hPa temperature (T850) verification 
for both forecasts, which are expected to help users 

clarify the risks posed by extreme climate events. 

 

Data and verification methods 

EFI and EFIR values are calculated for JMA’s 

one-month 25-member ensemble prediction, which 

is performed every Sunday, Monday, Wednesday 
and Thursday. JRA-25/JCDAS (Onogi et al. 2007) 

data are used for verification. Extreme climatic 

events are defined as occurring when analysis data 
exceeds the 90th climatological percentile or falls 

below the 10th percentile. These percentiles are 
estimated from the analysis of 1981 – 2010 data. 

To investigate the skill of EFI and EFIR in detecting 

extreme climatic events, focus was placed on scatter 

plots for analysis anomalies and EFI or EFIR, and on 

hit rates and the number of false alarms. Reference 

was made to the verification method of Petroliagis 

and Pinson (2012).  
 

Verification results 

The results presented here are for 
seven-day-mean forecast fields initialized from 1 

March, 2011, to 31 December, 2012. It is important 
to understand the relationship between predicted 

EFI (or EFIR) values and actual anomalies. Figure 1 

shows scatter plots for T850 analysis anomalies and 

EFI/EFIR values for Kobe, Japan (35N, 135E) with 

lead times of 5 – 11 days. The greater index 

amplitudes corresponding to larger analysis 
anomalies suggest that EFI and EFIR are useful in 

predicting extreme climatic events. However, the 

values of these indices do not always relate to large 
analysis anomalies (e.g., when the EFI and EFIR 

figures are –0.6, analysis anomalies could be in the 
range from –6 to 0 K). Forecast errors also result in a 

wide range of EFI and EFIR values. The amplitude 

of EFIR is often larger than that of EFI because the 
former is highly sensitive to the tails of forecast 

probability distribution as reported by Zsótér (2006).  

Figure 1  Scatter plots of (a) EFI and (b) EFIR 
values and analysis anomalies for T850 in Kobe, 
Japan (35N, 135E) with lead times of 5 – 11 days.

(a) 

(b) 
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Figure 2  (a), (b) Hit rates and (c), (d) numbers of false alarms (solid lines) and valid alarms (dotted lines) based on 
different EFIR thresholds for T850 extreme events in Kobe, Japan (35N, 135E) defined with the thresholds of (a), (c) > 
90th percentile and (b), (d) < 10th percentile. The line colors indicate different forecast lead times. 

   Figure 2 shows hit rates and the number of false 

alarms with EFIR for T850 extreme climatic events in 

Kobe. For example, the hit rate and false alarm rate 
for extremely high T850 values defined with an EFIR 

threshold of 0.6 are approximately 0.33 and 0.22, 

respectively. The hit rates for extremely low T850 

values are higher than those for extremely high 

values, but the false alarm rates are also higher. 

These scores vary considerably depending on areas, 

lead times and forecast variables (not shown). 
 

Summary 

The results of verification for the EFI and EFIR 
judgments used in JMA’s one-month EPS are 

expected to help users understand levels of forecast 
skill depending on areas, lead times and forecast 

variables. The risk of extreme climatic events can be 

determined based on the selection of an appropriate 

EFI/EFIR threshold, and more detailed information 

can be obtained from other EPS products (e.g., EPS 

meteogram (Harada and Takaya 2012)). 
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El Niño-Southern Oscillation Feedback in JMA’s Seasonal Forecast Model 
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Introduction 

It is important for seasonal prediction to represent El 
Niño-Southern Oscillation (ENSO) appropriately in an 

atmosphere-ocean coupled global circulation model 
(CGCM). ENSO forecast skill in JMA’s operational 

seasonal forecast model (JMA/MRI-CGCM) is 

comparable to that of models used in other major 
centers. However, the amplitude, frequency and spatial 

pattern of ENSO as predicted by the JMA model differ 

from the results of actual ENSO analysis. ENSO 

representation among CGCMs is diverse, and it has 
been suggested that atmospheric models play a 

dominant role in determining ENSO amplitude and 

frequency in CGCMs (Guilyardi et al. 2009). In this 
study, two types of atmospheric feedback (ENSO 

feedback) were diagnosed with reference to the 
method proposed by Lloyd et al. (2009). 

 

Data 
Single-member forecasts in a set of hindcasts were 

analyzed using JMA’s CGCM with (CGCM_FLAD) and 

without flux adjustment (CGCM_NFLAD). Forecasts 

were initialized twice a month for CGCM_FLAD and 
once a month for CGCM_NFLAD for the period 1979 – 

2008. An AMIP-type run with JMA’s CGCM was also 

used for the period 1979 – 2010, a quasi-coupled data 
assimilation system data set (MOVE-C; Fujii et al. 

2009) was used for the period 1979 – 2009, and 
JRA-55 reanalysis data (Ebita et al. 2011) were used 

for the period 1980 – 1999. The monthly mean fields of 

all variables were analyzed. 
 

Diagnosis method for ENSO feedback 

Lloyd et al. (2009) diagnosed two types of 

atmospheric feedback (dynamical and total heat flux) 
that have a dominant influence on ENSO. Dynamical 

feedback is represented as follows: 

τ୶Ԣ ൌ µTԢ. 

This is known as Bjerknes feedback (Bjerknes 1969) – 

a positive type in which a positive (negative) sea 

surface temperature (SST) anomaly (TԢ) induces a 
westerly (easterly) wind stress anomaly ( τ୶Ԣ ), 

enhancing a positive (negative) SST anomaly.  
The total heat flux feedback is represented as 

follows: 

QԢ ൌ αTԢ. 

This is considered to be a negative type in which a 

positive (negative) SST anomaly ( TԢ ) increases 

(reduces) the total heat flux (Q), resulting in SST 
anomaly decay. Total heat flux feedback (α) consists of 

contributions from latent heat flux (LH), sensible heat 
flux (SH), short-wave radiative flux (SW) and 

long-wave radiative flux (LW). 

Remote dynamical feedback μ, local dynamical 
feedback μL and local heat flux feedback α were 

calculated with reference to the method proposed by 

Lloyd et al. (2009). Results averaged for 1 – 7 forecast 

months were shown as CGCM diagnostics. 
 

Diagnosis results 

   Figure 1 shows ENSO feedback estimated from 
each type of data. The dynamical (μ and μL) and total 

heat (α) feedback in CGCMs has the same sign as 
JRA-55 reanalysis results and is reasonable compared 

to that of CMIP3 models (Lloyd et al. 2009). However, 

the feedback is underestimated in CGCMs compared 
to JRA-55. For the AMIP run, μ and α are closer to 

JRA-55. Similar results were obtained from CMIP3 

models (Lloyd et al. 2009 and Lloyd et al. 2011). 

MOVE-C also underestimates μ and α. Lloyd et al. 
(2009) suggested that α is related to ENSO amplitude 

and influences ENSO representation in coupled 

models. Figure 2 shows the values of four 
heat/radiative flux feedback components (αLH, αSW , 

αLW , and αSH ). For all data, αLH  and αSW  are 
dominant, and αLH is well represented. However the 

value of αSW depends on the models, and can be 

seen as a significant factor contributing to errors in α 
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(Lloyd 2009). The amplitude of αSW for the AMIP run 

is larger than that for CGCMs and similar to that for 

JRA-55. These characteristics are also seen with 
CMIP3 models (Lloyd et al. 2011). The spatial 

distribution of αSW  is shown in Figure 3. Negative 

feedback of αSW  in the NINO.3 region related to 

large-scale convective activity is reproduced by all 

models but is underestimated by CGCMs and 

MOVE-C compared to the results of JRA-55 and the 

AMIP run. Positive feedback of αSW off the coast of 
Peru (in a region of large-scale subsidence) is 

overestimated by CGCMs compared to the results of 

JRA-55, and by most CMIP3 models (Lloyd et al. 
2012). The underestimation of precipitation anomalies 

during ENSO events and poor representation of clouds 
over the tropics in models can be considered as 

possible reasons for this. The diagnostics presented 

here offer a way to clarify and assess the 

representation of ENSO feedback in atmospheric 

models. 
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 Figure 1  Average annual NINO.4 μ (blue), NINO.3 μL 
(green) and NINO.4 α(red) values for CGCM_FLAD, 
CGCM_NFLAD, AMIP run, JRA-55 and MOVE-C 

Figure 2  Average annual α components: 
αSH(purple), αLH(green), αLW(red) and αSW(blue) 
for CGCM_FLAD, CGCM_NFLAD, AMIP run, 
JRA-55 and MOVE-C

Figure 3  Map of average annual αSW, 
for CGCM_FLAD, CGCM_NFLAD, 
AMIP run, JRA-55 and MOVE-C. The 
NINO.3 and NINO.4 areas are shown 
by the boxes. 
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The Navy Global Environmental Model (NAVGEM) is the U.S. Navy’s new high-

resolution global weather prediction system, replacing the existing Navy Operational Global 
Atmospheric Prediction System (NOGAPS) which was introduced in 1982.  Development of 
NAVGEM was sponsored by ONR and OPNAV N2/N6E (Oceanographer of the Navy).  
NAVGEM represents a significant NRL milestone in Numerical Weather Prediction (NWP) 
system development by introducing a Semi-Lagrangian/Semi-Implicit (SL/SI) dynamical core 
together with advanced moisture and ozone physical parameterization schemes.  The new SL/SI 
dynamic core allows for much higher model resolutions without the need for small time steps.  
This capability has permitted NAVGEM’s initial operational transition to have both higher 
horizontal and vertical resolutions than NOGAPS (50 vertical levels in place of NOGAPS’s 42 
levels and an increase of horizontal resolution from 42 km to 37 km) and also to include cloud 
liquid water, cloud ice water, and ozone as fully predicted constituents, contain new moisture, 
solar radiation and longwave-radiation  parameterizations, and significant upgrades to the data 
assimilation component and to complete the 180-hour forecast in the allotted operation window. 

Critical to NAVGEM’s success is the new SL/SI dynamical core.  The SL method is to 
find the trajectory of the fluid motion that starts at the previous time step and ends up at the 
NAVGEM grid point location.1 The SL integration removes the Courant-Friedrichs-Lewy (CFL) 
limitation of NOGAPS for conventional fixed point integration of the dynamical equations, 
however high-speed gravity waves associated with high-frequency fluctuations in the wind 
divergence, remain.  This is mitigated by incorporating a SI method into the SL integration, 
where the terms responsible for the gravity waves are identified and treated in an implicit 
manner, thereby slowing down the fastest gravity waves.  The combined SL/SI schemes have 
enabled NAVGEM to run with a time step that is three times faster than NOGAPS. 

With the addition of cloud liquid water and cloud ice water advection, NRL has 
developed a new 2-species micro-physics cloud water parameterization based on the work of 
Zhao.2   Convective clouds are allowed to evaporate at a finite rate that varies with cloud cover, 
providing for a more realistic representation of convective processes.  This feature is enhanced 
by detraining cloud condensate between the lifting condensation level and the level of free 
convection in the NAVGEM modified versions of the Simplified Arakawa Schubert and the 
National Centers for Environmental Prediction’s (NCEP) Global Forecast System’s (GFS) 
shallow convection schemes.  

Another significant improvement in NAVGEM is the addition of the Rapid Radiative 
Transfer Model for General Circulation Models (RRTMG) parameterizations for solar and 
longwave radiation, developed by the Atmospheric Environment Research Inc..3  RRTMG 
includes significantly more radiation frequency bands in the solar and longwave spectra than the 
previous NOGAPS radiation parameterizations and incorporates additional molecular absorbers 
and emitters. A unique feature of the RRTMG is the use of a Monte-Carlo technique to compute 
the sub-grid cloud variability and the vertical cloud overlap.  
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Satellite radiance observations typically account for more than 65% of the total 
assimilated observations in NAVGEM.  The data assimilation component that brings these 
observations into NAVGEM is the NRL Atmospheric Variational Data Assimilation System – 
Accelerated Representer (NAVDAS-AR), which has been operational in NOGAPS since 2009. 4  
The NOGAPS radiance bias correction method has been replaced in NAVGEM with a  
variational bias correction approach, which estimates the bias predictors simultaneously with the 
atmospheric analysis during each data assimilation cycle.5  This way, the bias corrections are 
constrained by other observations, the NWP model, and the analysis procedure itself.  
 Verification of NAVGEM’s accuracy shows significant improvements over NOGAPS.  
The Northern Hemisphere 1000 hPa geopotential height anomaly correlations (AC) for summer 
2012 and fall/winter 2012-13 shows a 6 hour improvement over the NOGAPS forecasts at 120 h.  
Tropical cyclone (TC) track forecasts are of vital importance to the safety of U.S. Navy ships, 
aircraft, and personnel.  TC track error comparisons for summer/fall 2012 indicate that the 
NAVGEM 120-h TC track error is 30 nautical miles less than NOGAPS, approximately a 12-
hour improvement.  Synoptic evaluations of daily weather maps show reduced surface pressure 
errors with NAVGEM, particularly for maritime lows that impact the safety of ships at sea.  In 
addition, the mid-level troughs associated with frontal systems were more realistic (deeper and 
faster moving) in NAVGEM than in NOGAPS.  

An official operational test (OPTEST) of NAVGEM versus NOGAPS was conducted by 
Fleet Numerical Meteorology and Oceanography Center (FNMOC) for the period of 6 
November 2012 – 18 December 2012 with a statistical evaluation based on FNMOC’s standard 
global scorecard.  This scorecard evaluates the comparative skill of the models based on AC, 
mean and root mean square errors of 16 different fields and observation types, including TC 
tracks, 10-meter winds at buoy sites, 1000 hPa and 500 hPa AC, and winds and temperatures at 
radiosonde locations, assigning a weighted positive score to the model with statistically-
significant better forecasts.  Improvements in all categories would yield a skill score of +24.  
NAVGEM scored a +14, the highest score ever obtained for a global model transition at 
FNMOC.  Historically, global model improvements resulted in a skill improvement of +2.  NRL 
will continue to upgrade NAVGEM with planned transitions to higher vertical and horizontal 
resolutions, a more computationally efficient dynamical core, further improvements to the data 
assimilation system, more advanced physical parameterizations, and the assimilation of data 
from recently-launched satellite sensors.  
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1. Introduction 
  A method of predicting daily sea ice distribution was 
developed to determine sea ice boundary conditions for 
JMA’s one-month ensemble prediction system (EPS), 
which employs an atmospheric global circulation model 
(AGCM). Sea ice distribution for the coming month is 
predicted based on initial sea ice concentration (SIC) 
anomalies in ocean grids and initial sea ice extent (SIE) 
anomalies in the Northern and Southern Hemispheres 
with reference to the method proposed by Mizuta et al. 
(2008). The skill of these sea ice distribution predictions 
is better than that of the climatological distributions used 
in JMA’s current operational one-month EPS. 
 
2. Data and sea ice area definition 
  The SIC used to predict sea ice distribution comes from 
satellite-based daily data sets covering the period from 
1986 to 2010 as analyzed by JMA (Ishii et al. 2005), and 
the horizontal resolution is 0.25 degrees. 
  Ocean grids with SIC values exceeding 55% are 
defined as sea ice areas and others are defined as open 
sea based on the SIC threshold of sea ice grids in the 
AGCM. The climatological sea ice presence frequency 
for each grid is determined from 31-day running means 
of daily presence frequency for the period between 1986 
and 2010. 
 
3. Procedure for daily sea ice prediction 
  Daily sea ice distribution is predicted using a 
combination of persistent initial SIC anomalies observed 
in ocean grids and persistent initial SIE anomalies in the 
Northern and Southern Hemispheres. The procedure for 
such prediction is described below and presented as a 
diagram in Fig. 1. 
Initial date 
  Initial sea ice distribution is determined by identifying 
ocean grids as either sea ice or open-sea types based on 
the SIC threshold (55%). Initial SIC anomalies in ocean 
grids and initial SIE anomalies in the Northern and 
Southern Hemispheres are also calculated. 
Lead times of less than 14 days 
  With lead times of less than 14 days, SICs predicted for 
ocean grids are assumed to be persistent initial 

anomalies, which requires the addition of initial SIC 
anomalies to daily climatological SICs. Ocean grids are 
identified as either potential sea ice or potential open-sea 
types based on the SIC threshold (55%). Sea ice 
distribution is then predicted by adjusting the potential 
distribution so that the initial SIE anomalies in each 
hemisphere persist, which means that potential sea ice 
(open-sea) grids with lower (higher) climatological 
frequency are modified to open-sea (sea ice) grids.  
Lead times of more than 15 days 
  With lead times of more than 15 days, sea ice 
distribution is predicted by adjusting the previous day's 
distribution so that initial SIE anomalies in each 
hemisphere persist. In other words, the predicted SIE 
anomaly is made equal to the initial anomaly by 
correcting sea ice and open-sea grids based on 
climatological presence frequencies. During the sea ice 
development (melting) season, previous open-sea (sea 
ice) grids with higher (lower) frequencies are converted 
to sea ice (open-sea) grids. 
 
4. Verification 
  Equitable threat scores were used to verify the accuracy 
of sea ice distribution predictions. Figure 2 shows such 
verification based on four methods involving the use of 
persistent initial SIC anomalies, persistent initial SIE 
anomalies, a combination of both, and sea ice 
climatologies. The combined method is the most skillful 
except for January due to sparse Antarctic sea ice 
distribution, which exacerbated the scale of estimation 
errors. 
 
5. Summary and future plans 
  In this work, a method of predicting sea ice boundary 
conditions for JMA’s one-month EPS was developed. 
The approach was found to provide sea ice distribution 
values that correspond to the results of actual analysis. 
Daily sea ice distributions predicted using this method 
are to be introduced in the next update of JMA’s 
one-month EPS.  Arctic sea ice retreat related to global 
warming (IPCC 2007) is also expected to be taken into 
account, and the skill of one-month EPS prediction is 
expected to improve. 
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Fig. 2 Equitable threat scores for sea ice distribution predicted using four methods 
The x-axis shows the lead time from the initial date, and the y-axis shows the equitable threat score. Scores are 
calculated for the period from 1986 to 2010, and the initial dates (from left to right) are January 1, April 1, July 1 and 
October 1. The upper figures are for the Arctic and the lower ones are for the Antarctic. The red, blue, purple and green 
lines show scores based on the proposed method, persistent initial SIC anomalies, persistent initial SIE anomalies and 
climatological distributions, respectively. 

January 1               April 1                July 1                 October 1 

Fig. 1 Summary of sea ice prediction method 
In Step 5, the potential SIE anomaly is smaller than the initial anomaly. Step 6 is for the sea ice development season. 
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