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1. Background 

The vertical coordinate system used in the operational 

global model of the JMA (Japan Meteorological Agency); i.e., 

the GSM (Global Spectral Model), is the Eta (σ-p hybrid) 

coordinate (Simmons and Burridge 1981, Simmons and 

Strüfing 1983). The JMA is now planning to increase the 

number of vertical layers in this model from the current 60 to 

100 levels, and to lift the model top full level from 0.1 to 0.01 

hPa in the near future. In addition, flexible change of the 

model’s vertical levels is often required for various research 

activities and numerical experiments; e.g., an increase in the 

number of layers around the tropopause for research related to 

troposphere–stratosphere interaction, or an increase in the 

number of layers in the boundary layer for studies of 

boundary layer clouds. However, there are few papers related 

to the determination of vertical levels (e.g. Eckermann 2009). 

Regarding the determination of vertical levels, it is an 

extremely important issue at what altitude more layers should 

be distributed in numerical weather prediction or climate 

models. However, this depends on what phenomena we wish 

to simulate the most realistically, what score we wish to 

improve the most, and to what extent each physical 

parameterization (boundary layer, gravity wave, convection, 

etc.) can take advantage of the fine vertical levels. Another 

issue is how to obtain a smooth profile of the vertical layer 

distribution after deciding on the approximate weights for the 

layer distribution. In this report, the latter issue is discussed. 

There are two possible methods to determine the 

placement of the layers in a vertical coordinate system. One is 

the connection of some mathematical functions that retains 

the continuities up to the n-th order derivatives. This method 

can certainly provide a smooth profile of the depth of the 

layers; however, it is difficult when using this method to meet 

very detailed requirements for the distribution of the layers to 

each altitude, to save computing resources, and maximize the 

total model performance. The second method is to obtain a 

smooth function after arbitrarily giving some pairs of (k, pk 

−1/2) for an assumed surface pressure ps, where pk −1/2 are 

half-level pressures for the k-th model level (k = 1 for the 

bottom layer). However, in this case it is not so easy to obtain 

a smooth function, due both to the wide pressure range (five 

orders of magnitude: 1000–0.01 hPa), and also because 

accurate fitting is required, not only near the top, but also near 

the surface where model vertical resolution is much higher 

than at the mid-level around 800–300 hPa. If we use a simple 

logarithm of pressure for the fitting, the deviation will be 

significant for the levels near the surface. Therefore, a 

practical method to obtain a smooth and satisfactory fitting 

function for the layer placement is considered here. 

 

2. Method 
Half-level pressures pk −1/2 can be written using the 

constants Ak −1/2 and Bk −1/2 (k = 1, 2, …, kmax) in the Eta 

coordinate as follows: 
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where kmax is the total number of layers. The continuous 

functions p(k)̃, A(k)̃, and B(k)̃, where k ̃is real and corresponds 

to integer values of k, are defined according to discrete value 

sets of pk −1/2, Ak −1/2, and Bk −1/2. In the following discussion, 

ps = p1000 ≡ 1000 hPa is assumed, and a function μ(p) is 

defined as a weight of A(k)̃ in p(k)̃:  
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In 1999, T. Matsumura (JMA) developed a method in 

which pk −1/2 are determined first, and then Ak −1/2 and Bk −1/2 

are determined using a given function μ(p). The same 

procedure is also adopted here. 

 

2.1. Determination of pk −1/2 
[Step 1] First, a fitting polynomial of degree eight f(k)̃ 

that fits the data (kn, log(pkn−1/2)) corresponding to the 

arbitrarily given pairs (kn, pk n−1/2) (n = 1, 2, …, N. 8 < N ≤ 

kmax.) is calculated using the least squares method:  
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where ei are fitting parameters. When the function f(k)̃ is 

fitted, the weight for each given data point is extremely 

important. If the assumed errors for the fitting are the same 

for all given data, it is obvious that the data around the model 

top cannot be fitted. In contrast, if the assumed errors are 

proportional to pkn−1/2, the obtained function significantly 

deviates from the given data near the surface. Therefore, 

Δpkn−1/2 are assumed as the relative magnitude of the errors 

(Δpkn−1/2 / pkn−1/2 for logarithm). By using this weight, the 
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function can fit the given data well, both near the model top 

and the surface. Although we cannot determine the exact 

values of Δpkn−1/2 at this stage, we can use rough 

approximations calculated from the given data. If more 

accurate values are required, they can be obtained by 

iteration. 

[Step 2] Although the function f(k)̃ is obtained in Step 1, 

it cannot be guaranteed that the layer thickness profile is 

sufficiently smooth. Therefore, a smooth function g(k)̃, which 

corresponds to Δlog(p), is calculated as follows. A polynomial 

g(k)̃ of degree six, which has a lower degree than f(k)̃, is used 

to obtain an adequately smooth profile of layer thickness: 
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where di are fitting parameters. The data Δlog(pk −1/2) for k = 1, 

2, …, kmax−1 are calculated using eq. (4) as input data for the 

fitting. The relative errors in the fitting are assumed to be 

proportional to Δlog(pk −1/2). The first term in eq. (5) means 

that Δpk −1/2 for the second layer from the top is equal to that 

of the top layer. 

[Step 3] As the layer depth profile is fitted in Step 2, the 

sum of the layer depth Δpk n−1/2 is not consistent with ps. 

Therefore, the function obtained in Step 2, g(k)̃, is normalized 

as follows: 
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[Step 4] Finally, the half-level pressure pk −1/2 can be 

obtained as follows: 
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An example of the difference profiles of the obtained pk −1/2 

for 100 vertical levels (Fig. 1) shows that this method can 

generate a smooth profile for the vertical layers, which is 

created from the fitting of arbitrarily given data. 

 

2.2. Determination of Ak −1/2 and Bk −1/2 
An Eta coordinate that approaches the isobaric coordinate 

upwards faster than the operational Eta coordinate is required 

for performance tests related to the change of layer 

distribution. A new function of μ(p), which is a combination 

of two functions and has the following characteristics, is 

created. The pressures where μ(p) first becomes 1 and 0 are 

pmin and pmax for each, and the pressure where μ(p) = 0.5 is 

pcnt. This means that the coordinate is a completely isobaric 

coordinate above pmin, and a σ-coordinate below pmax. 

Continuities up to the second-order derivatives are imposed at 

μ(p) = 0.5 (for a variable log(p)). The first derivatives of μ(p) 

at pmin and pmax are also set to zero. The function is as follows:  
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Fig. 2 shows the created version of function μ(p), where pmin 

= 60 hPa, pmax = 1000 hPa, and pcnt = 400 hPa are assumed, 

together with the operationally used function. The figure 

shows that in the case of the created function, the Eta 

coordinate smoothly approaches the isobaric coordinate in the 

upper troposphere faster than the operational Eta coordinate. 
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Fig. 1: Vertical layer placement. An example of GSM L100 created by 
the procedure described in the text (red), GSM L60 in operation (green), 
and GSM L40 which was in operation until 2007. Profiles of Δpk −1/2 
(left) and Δlog(pk −1/2) (right). Note that Δlog(pk −1/2) at the top is infinity.

Fig. 2: Profile of μ(p) (a weight of coefficient of 
A in the pressure p for layers, where ps = 1000 
hPa is assumed). The new function (red) and the 
function used in the operational model (green).
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