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It is well known that the parameterizations of sub–grid processes in the forecast

model may work incorrectly on the non–isotropic grid. To avoid such an obstacle we

developed an approach to construct the longitude–latitude reduced grid with variable

latitude resolution suitable for semi–Lagrangian finite difference models.

The quasi–uniform grid on the Earth surface imposes some constraints on the steps

within the region under consideration. Therefore the iterative method of grid generation

implies following restrictions on the grid step ratio: max(∆ϕ/(∆λ cos(ϕ)), ∆λ cos(ϕ)/∆ϕ)

≤ C(ϕ) + δC and ∆jϕ/∆j+1ϕ ≤ R. Beginning with the uniform (in both latitude

and longitude) grid we construct a one–dimensional latitude mesh which is used for the

reduced grid generation. Than we diminish δC and continue this procedure.

Our technique of latitude mesh generation is based on the physical analogy between a

simplex mesh and the truss structure [2] where meshpoints are nodes of the truss. Assum-

ing an appropriate force–displacement function for the bars in the truss we determine the

equilibrium of this system. The latitudinal grid steps with high resolution in the vicinity

of Novosibirsk (in latitude 55◦ North) are shown in Fig. 1a.

The main goal of the reduced grid construction method is to minimize the total num-

ber of the grid nodes at the fixed upper limit ϵΨ for the sum of the r. m. s. interpolation

error of a given function f 0
k (k = 1, · · · , nk):
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, where (ϕ∗, λ∗) are coordinates in the rotated

system with North pole at (55◦, 45◦) with respect to regular coordinate system (ϕ, λ).

Equation (1) is solved numerically for each value of ϵΨ and the grid obtained in such

a way we call as the optimal reduced grid. It should be noted that the properties of such

a grid substantially depend on the function f 0
k . Normalized values of the grid steps ∆ϕ

and ∆λ as a function of latitude ϕ are shown in Fig. 1b. Small disturbances on the lower

curve (the longitudinal step) are due to the restriction on the number of longitudinal grid

points nλ(ϕ) because it is the product of 2n · 3m · 5l (where n ≥ 2,m ≥ 0, l ≥ 0).



We carried out a number of shallow–water tests [4] that involve both the solid–body

rotation of a cosine bell around the sphere through the poles and two cases of the defor-

mational flow tests. In all cases our method of grid generation was found to be promising.

It should be noted that the error of the numerical solution obtained on the reduced grid

with uniform latitude resolution is somewhat higher in comparison with that presented

in [1].

This method will be used for construction of the grid for the new version of the

weather prediction SL–AV global model [3] with conservative semi–Lagrangian scheme.

Latitudinal derivatives in this model are calculated in the space of longitudinal Fourier

coefficients, so that the reduced grid can be implemented.

Advantage of our method is that it allows us to take into account various details of

the weather prediction model and to apply additional restrictions on the grid. This work

was supported by the RFBR grant 10-05-01066.

Figure 1: Normalized latitudinal (upper curve) and longitudinal (lower curve) steps after

first iteration (a) and when the iteration convergence criterion is achieved (b).
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