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It is common practice to filter the fields (or sometimes their tendencies) in order to remove high 
wavenumbers that otherwise would affect the accuracy of a climate model. Generally, these damping 
methods are applied to variables such as temperature, pressure and humidity, and if filtering is needed for 
momentum, it is often applied to the corresponding scalar quantities, such as streamfunction and velocity 
potential, or vorticity and divergence. In this study we proceed to the filtering of the wind vectors themselves. 
The convolution filter developed by Surcel and Laprise (2010) and adapted for scalar variables on the polar 
grid (Surcel and Laprise 2011) is now generalized for vector fields. 

When the convolution is applied to vectors such as the horizontal wind, care has to be taken to use a 
representation of the vector components relative to the same reference system, chosen here to correspond to 
the application point. As the polar grid used in this paper is an intermediate step to the application of the filter 
on a spherical latitude-longitude stretched grid, the representation of the vector components is made by 
analogy with the spherical grid.  
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u, v( )  correspond to the 

“zonal” and “meridional” wind components (using the terminology on the sphere), with the sign convention 
that   

! 

u is positive eastward and   

! 

v is positive northward. 
The filter is applied simultaneously for both wind components and the convolution is applied 

successively in radial and azimuthal directions. Following the meteorological tradition, the wind components 
are defined relative to a locally orthogonal reference system whose base vectors change with location (only 
with longitude in fact for the polar grid). Therefore the application of the filter operator requires representing 
the wind components contributing to the convolution at a point in the same coordinate system as that point. 
For each point 
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chosen truncation distance for the convolution. The wind components at point 
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We note that the conversion only involves the longitude angle, not the radial distance, thus no transformation 
is required for points aligned on the same meridian.  

To verify the efficiency of the convolution filter we define test wind fields by constructing rotational 
and divergent motions using the Helmholtz theorem for two-dimensional vector field 
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where 
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"  is the streamfunction and 
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"  the velocity potential. We then employ scalar test functions, for use as 
streamfunction or velocity potential, and we develop analytically the corresponding zonal and meridional 
wind components in polar coordinates. We use a signal corresponding to either a pure rotational or divergent 
large-scale motion, and then add to it a small-scale noise that is also either rotational or divergent.  

The filter’s ability for application to vectors was tested first on a uniform polar grid and we checked 
the performance of the filter around the pole. To verify the performance of the convolution filter we represent 
a large-scale wind field, considered as analytical solution, a perturbed wind field created by adding a noise to 
the analytic wind field, and the filtered wind field that must be identical with the analytical solution if the 
filter works properly. 



In Fig. 1 (right panel), a streamfunction represented by a double cosine with wavelengths of 20,000 
km defines a purely rotational large-scale wind field. To this large-scale field a small-scale divergent wind 
noise with wavelength of 500 km is added (middle panel). The convolution filter uses a weighting function 
that keeps unchanged all signals with wavelengths larger than 3,000km and removes all signals with 
wavelengths smaller than 800km. The convolution is calculated for truncation distance of 1,100 km. The 
filtered field (right panel) shows that the large-scale signal is preserved and the noise removed. For this test 
the large-scale field was located specifically such as to have not zero winds at the pole. Numerically the pole 
is considered as ( )

j
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j =1,K,m  and the convolution filter is applied there as for all other grid-points. 
The tests revealed that the convolution filter works properly in the vicinity of the pole, and the large-scale 
fields are recovered without distortions near the pole.  

  
 A similar experiment was repeated on a polar stretched grid. A test field wind composed from a large 
scale purely divergent wind developed using a velocity potential in form of cylindrical harmonic with radial 
wavenumber 1 and azimuthal wavenumber 2 (Fig. 2 left panel) was perturbed by a rotational noise developed 
using a streamfunction in form of double cosine with wavelength 400km (Fig. 2 middle panel). The filter uses 
a weighting function that keeps unchanged all signals with wavelengths larger than 3,000km and removes all 
noises with wavelengths smaller than 600km. These parameters correspond to a smoother spectral response 
than in the first example and thereafter necessitate a truncation distance of only 900 km to remove the noise. 
Because the filter is applied outside the uniform high-resolution region and to better display the effect of the 
filter in the stretching zones, we present only the test-function outside the high-resolution zone. In Fig.2 (right 
panel) we show the filtered function; visually we note that the convolution filter is able to remove the noise 
and after the application of the filter the large scale signal is recovered. No deformations were noted around 
the high-resolution domain and the filter works properly in the stretching zones as well as around the pole. 

 
The present study shows that with appropriate definition constraints, and representing the winds 

components for all points contributing to the convolution relative to the same reference system as the 
application point, we were able to remove small-scale noise superimposed on large-scale signals.  
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Figure 1: A large-scale rotational 
wind field (left panel) is perturbed 
by a small-scale divergent wind 
field (middle panel). The filtered 
field is represented in the right 
panel.  
 

Figure 2: A large-scale divergent 
wind field (left panel) is perturbed 
by a small-scale rotational wind 
field (middle panel). The 
convolution filter is applied outside 
the uniform high resolution region 
and the filtered field is represented 
in the right panel.  
 


