
GPU Acceleration of the Meso-scale Atmospheric Model
“ASUCA”

Takashi Shimokawabe1, Takayuki Aoki1, Junichi Ishida2, Chiashi Muroi2
1Tokyo Institute of Technology, Japan; 2Japan Meteorological Agency

E-mail : shimokawabe@sim.gsic.titech.ac.jp

1 Introduction
Graphics Processing Units (GPUs) offer high

performance of floating point calculation and wide
memory bandwidth. Recently, general-purpose com-
putation on GPUs (GPGPU) has become an active
area of research in parallel computing because they
provide high performance at relatively low cost for
scientific computing applications. In the field of
high performance computing, it was reported that
various applications such as computational fluid
dynamics [1] and astrophysical N-body simulations
[2] ran dozens of times faster on a GPU than on
a CPU core. In the field of numerical weather
prediction, GPU acceleration of several modules
from the Weather Research and Forecast (WRF)
model were reported. Michalakes et al. reported a
20× speedup by GPU computing for WRF Single
Moment 5-tracer (WSM5) microphysics, which is
a computationally intensive physics module of the
WRF model [3], but this speedup remains as a 1.3×
overall improvement in the application. Linford et
al. reported a 8.5× increase in speed on a GPU
for a computationally expensive chemical kinetics
kernel from WRF model with Chemistry (WRF-
Chem) as compared to serial implementation [4].
Module-by-module acceleration is adopted as an
approach to increase WRF speeds.

Full GPU application, in which all calculations
are executed on a GPU using variables allocated on
its memory, is essential in achieving more than ten
times acceleration over the whole application com-
pared to CPU application. This allows simulation
to be run without frequent data transfer between
the GPU and the host computer.

We are currently working on full GPU applica-
tion for ASUCA [5] - a next-generation high reso-
lution meso-scale atmospheric model being devel-
oped by the Japan Meteorological Agency. As a
first step, we have implemented its dynamical core
as a full GPU application, representing an impor-
tant step toward establishing an appropriate frame-
work for full GPU-based ASUCA. The GPU code
is written from scratch in the CUDA (Compute
Unified Device Architecture) [6] using its original
code in Fortran as a reference. The Numerical re-
sults obtained from the GPU code agree with those
from the CPU code within the margin of machine
round-off error. In this paper, we report the re-

sults of GPU acceleration of the dynamical core
in ASUCA, which has not yet been accelerated in
WRF.

2 GPU implementation
In this study, we computed the dynamical core

on an NVIDIA GTX 285 using CUDA 2.3 with an
AMD Phenom 9750 Quad (2.4 GHz) and 8 GByte
of memory as the host computer.

In the CUDA programming, CUDA kernels for
the GPU are programmed. When a kernel is launched,
it is executed by individual threads arranged into
blocks with unique block and thread IDs. All blocks
are grouped as a grid and all threads in the grid are
able to access VRAM called as the global memory
on the GPU. Access to the global memory takes
400 to 600 clock cycles, which corresponds to 159
GB/s, for example, in the case of the GTX 285. 16
kByte of shared memory is assigned in each block
as scratchpad memory with an access time of about
two cycles. Any part of the shared memory can be
read and written by all threads in the block, which
is utilized as a software-managed cache to reduce
access to the global memory.

The implementations of some functions used in
the dynamical core in ASUCA are explained here.
2.1 Advection

In order to improve calculation performance in
ASUCA, access to the global memory is reduced
by making use of the shared memory as a software-
managed cache. To calculate advection for a given
grid size (nx, ny, nz), the kernel functions for the
GPU are configured for execution in (nx/64, nz/4, 1)
blocks with (64, 4, 1) threads in each block. Each
thread specifies an (x, z) point and performs calcu-
lations from j = 0 to j = ny − 1 marching in the y
direction. In order to facilitate the implementation
of kernel functions for domain decomposition with
MPI, the z direction in numerical space is mapped
to the y direction in CUDA.

The four-point stencil of a point in each direc-
tion is required to compute advection. To carry out
calculations in the j th slice, the elements in the
current slice are needed for calculations by more
than one thread. On the other hand, elements pre-
ceding and succeeding the current y position are
used only for the thread corresponding to the el-
ement’s (x, z) position. Each block therefore has
an array with (64 + 3) × (4 + 3) elements in its



shared memory, which is utilized to accommodate
2D sub-domain data and halos for the current j th
slice. The elements along the y axis are stored in
registers on the corresponding thread (Figure 1).
Data stored in both shared memory and registers
to perform the j th computation are reused for the
j + 1 th calculation as far as possible.

Marching direction	


Shared memory	


Register	


1 thread	


y	


x	


z	


4

Figure 1: (64 + 3) × (4 + 3) elements in shared
memory and 3 elements in registers along the y
axis

2.2 1D Helmholtz-like elliptic equa-
tion

The 1D Helmholtz-like elliptic equation is solved
in the vertical direction because the HE-VI scheme
is adopted in ASUCA. Through discretization of
the equation, a tridiagonal matrix is obtained. The
basic strategy of implementation for the solver for
this matrix is the same as that for advection. How-
ever, because sequential computation in the z di-
rection is required for it, threads should not march
along the y axis in view of the efficiency of paral-
lel computing by threads. Thus, (nx/64, ny/4, 1)
blocks with (64, 4, 1) threads are configured to the
given grid size (nx, ny, nz). The threads march in
the z direction for the Helmholtz-like elliptic equa-
tion.

3 Results
Figure 2 shows the performance of the dynam-

ical core in ASUCA in both single- and double-
precision floating-point calculation for six different
grid sizes. With nx set as 32 and nz set as 64, the
value of ny is varied from 16 to 56. In order to mea-
sure the performance on a GPU, we count the num-
ber of floating-point operations in ASUCA running
on a CPU with the Performance API (PAPI) [7].
This code is implemented in C/C++ language cor-
responding to GPU code. Using the obtained
count and the GPU computation time, the perfor-
mance on the GPU is evaluated. The performance
of 67.1 GFlops in single precision for a 320×56×64
mesh on a single GPU has been achieved. It is
found that the dynamical core in ASUCA imple-
mented on the GPU runs 51.5 times faster than
the original code for CPU performed by the serial
implementation in Fortran on the Intel Core i7 920
2.67 GHz. In the case of the computation in dou-
ble precision, the speed is increased by a factor of
15.8.

Grid number (nx*ny*nz)
0 200 400 600 800 1000 1200 1400

310×

Pe
rf

or
m

an
ce

 [G
Fl

op
s]

0

10

20

30

40

50

60

70

80
single precision, GPU
double precision, GPU
double precision, CPU

Performance of ASUCA on GPU (GTX 285)

Figure 2: Performance of ASUCA on a GPU (GTX
285) and a CPU. The solid blue and red points
indicate the performance of the GPU version in
single and double precision respectively. The
magenta outline points show the performance of
the original Fortran code running on a CPU core.

4 Conclusion and future work
We are currently developing a full GPU ver-

sion of ASUCA. As a first and key step, we have
implemented its dynamical core on a GPU. The
effective utilization of shared memory in the GPU
for optimization has resulted in the performance of
67.1 GFlops, which is 51.5 times faster than the
original code on a CPU. Implementation for multi-
GPUs will be a subject of future work.

Acknowledgments This research was supported in part by
the Global Center of Excellence Program “Computationism
as a Foundation for the Sciences” from the Ministry of Ed-
ucation, Culture, Sports, Science and Technology of Japan
and in part by the Japan Science and Technology Agency
CREST research program “Ultra Low-Power (ULP-HPC)”.

References
[1] J. C. Thibault and I. Senocak. CUDA implementation

of a navier-stokes solver on multi-GPU desktop plat-
forms for incompressible flows. In Proceedings of the
47th AIAA Aerospace Sciences Meeting, number AIAA
2009-758, jan 2009.

[2] Tsuyoshi Hamada, Tetsu Narumi, Rio Yokota, Kenji Ya-
suoka, Keigo Nitadori, and Makoto Taiji. 42 tflops hi-
erarchical n-body simulations on gpus with applications
in both astrophysics and turbulence. In SC ’09: Pro-
ceedings of the Conference on High Performance Com-
puting Networking, Storage and Analysis, pages 1–12,
New York, NY, USA, 2009. ACM.

[3] John Michalakes and Manish Vachharajani. GPU ac-
celeration of numerical weather prediction. In IPDPS,
pages 1–7. IEEE, 2008.

[4] John C. Linford, John Michalakes, Manish Vachhara-
jani, and Adrian Sandu. Multi-core acceleration of
chemical kinetics for simulation and prediction. In SC
’09: Proceedings of the Conference on High Perfor-
mance Computing Networking, Storage and Analysis,
pages 1–11, New York, NY, USA, 2009. ACM.

[5] Junichi Ishida, Chiashi Muroi, Kohei Kawano, and Yuji
Kitamura. Development of a new nonhydrostatic model
“ASUCA” at JMA. CAS/JSC WGNE Reserch Activi-
ties in Atomospheric and Oceanic Modelling, 2010.

[6] CUDA Programming Guide 2.3. http://developer.

download.nvidia.com/compute/cuda/2 3/toolkit/

docs/NVIDIA CUDA Programming Guide 2.3.pdf, 2009.
[7] S. Browne, J. Dongarra, N. Garner, G. Ho, and

P. Mucci. A portable programming interface for per-
formance evaluation on modern processors. Int. J. High
Perform. Comput. Appl., 14(3):189–204, 2000.


