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1. Introduction
Current climate models require efficient schemes for advection of humidity, liquid and solid water

variables, and a number of chemical constituents. Semi-Lagrangian (SL) transport schemes have proved
to be an efficient numerical method for treating the advection process. However, a serious disadvantage
of most SL schemes is that they do not formally conserve integral invariants, in particular, total mass,
which has been found to drift significantly if no corrections are applied during long integrations of the SL
climate model. Finite-volume based conservative SL transport schemes have gained prominence during
the recent years, but only a few of them are available for spherical geometry (global) application. The
most successfull developments in the spherical geometry are presented in papers [1], [2], [3]. Current work
generalizes the local conservative cascade semi-Lagrangian global advection scheme introduced in [2] to
the case of latitude-longitude reduced grid (see sect. 3 for details).

2. The finite-volume based conservative SL advection schemes
Unlike traditional SL schemes, finite-volume based conservative SL schemes use grid cells rather than

grid points and cell-averaged values of density rather than its grid-point values. Backward trajectories
with arrival points at regular (Eulerian) grid cell corners are constructed to define departure (Lagrangian)
cell. The cell averaged density value in the j-th grid cell on the time level n + 1 is defined as follows:

ρ̄n+1
j =

Mn(A∗
j )

mes(Aj)
. Here Mn(A∗

j ) is the mass enclosed on the time level n in A∗
j - the departure (Lagrangian)

cell corresponding to the arrival cell coinciding with j-th grid cell and mes(Aj) is the square of j-th grid
cell. Thus, the keypoint of finite-volume based conservative SL schemes is to calculate mass enclosed in
each Lagrangian cell.

3. Conservative cascade scheme on the reduced grid
Latitude-longitude reduced grid is quite similar to the regular latitude-longitude grid, the difference

is that the number of points in latitude rows decreases toward the poles. So, the latitude resolution is
uniform and the longitude resolution decreases towards the poles remaining uniform inside each latitude
row.

In order to apply the conservative cascade scheme on the reduced grid firstly the density is redis-
tributed from the reduced grid to the regular (full) latitude-longitude grid in conservative manner. The
latitude rows of the full grid coincide with those of reduced grid, and the number of points in latitude
rows of the full grid is equal to the number of grid-points in equatorial latitude row of the reduced grid.
This means that series of conservative 1D remappings (the remapping technique is described in [4]) inside
latitude rows should be done to obtain cell-averaged values of density on the full grid. These values are
then used to estimate the masses enclosed in the Lagrangian cells via conservative cascade scheme for
the regular grid. The only dissimilarity is that the number of Lagrangian cells to be treated in the 2nd
remapping differs from row to row. The meridional Courant number should be less than .5 in polar regions
for the scheme to works correctly (see [2] for details). However, modification obviating this restriction is
going ahead.

4. Numerical Experiments
a. Solid body rotation. The scheme was tested on the solid body rotation problem (test #1 from [6]).

The initial distribution was the cosine-bell. Numerical experiments were carried out on the regular grid
with resolution of 1.50 and on reduced grid from [5] of the same maximum resolution, which have 10% less
points than regular grid. The angle of solid rotation α = π

2 , the center of the bell was chosen such that
distribution goes along the pole to pole direction. Full revolution required 480 steps (meridional Courant
number Cθ = 0.5). All other parameters were set up as in [2]. The exact solution after one revolution is
just the initial distribution. Exact backward trajectories were used. The results are presented in Table 1
and on Figure 1.



b. Smooth deformational flow. The scheme was tested on the smooth deformational flow problem
(see [2] for full description). All parameters except resolution and time step were chosen as in [2]. The
grids were the same as in the solid body rotation test. The test problem was integrated for 3 time units
(nondimensional) with 120 time steps. The results are presented in Table 2.

Figure 1: Error fields in solid rotation test after one revolution for conservative cascade scheme on full
(a) and reduced grids (b), error field for non-conservative SL scheme (c), initial distribution (d)

Scheme l1 l2 l∞ max
Conservative cascade scheme on reduced grid 1.97E-02 1.34E-02 1,34-02 -0.4E-02
Conservative cascade scheme on regular grid 1.97E-02 1.34E-02 1,34-02 -0.4E-02
Non-conservative SL scheme 6.03E-02 3.78E-02 3,1E-02 -1.8E-02

Table 1: Error measures for solid body rotation test

Scheme l1 l2 l∞ max
Conservative cascade scheme on reduced grid 2.3E-04 6.3E-04 8.0-03 -1.45E-07
Conservative cascade scheme on regular grid 2.3E-04 6.3E-04 6.4-03 -1.45E-07

Table 2: Error measures for smooth deformational flow test

The cascade conservative SL scheme exactly preserves the mass and is also more accurate than non-
conservative SL scheme.

Currently the presented scheme is being implemented in the shallow-water model on the sphere [7].
This work was supported with the Russian RFBR grant 10-05-01066.
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