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  We developed an improved numerical scheme for solution of turbulence closure 
equations and demonstrate its effectiveness applying it to the one-dimensional non-
stationary atmospheric boundary layer (ABL).  The two-equation closure scheme 
includes the  equations of turbulent kinetic energy (1) and dissipation rate (2) along 
with Kolmogorov-Prandtl relationship for the turbulence coefficient (3) [Shnaydman, 
Berkovich].
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  Nowadays the two-equation turbulence closure became a standard feature of many 
ABL models.  So  it  is  important  to  develop  adequate  numerical algorithms for 
solution equations (1-3).  This algorithm has to be numerically stable for relatively 
large time steps  and positively defined for  turbulence kinetic energy (TKE) and 
dissipation.   Unfortunately  in  many  ABL  models  the  fulfillment  of  these 
requirements depends on  relations  between  the  mechanisms of  ABL formation 
especially between the TKE production and the effect of the buoyancy force [Jiang]. 
This in some cases could produce erroneous results.  Therefore here we developed a 
finite-difference scheme for (1-3) that is numerically stable and keeps TKE and ε 
positive throughout entire integration.  

 We conducted  numerical  experiments  to choose the most suitable form for the non-
linear and buoyancy terms.  First we realized that linearization of square terms on one 
time step has to be done in the following way (ϕ ε= ( , )E , ϕ  and ϕ n  are the values 
of unknown variables at given time t  and at the previous time step): 

ϕ ϕ ϕ2 2= × n - ( )ϕ n 2                                                                                      (4)

Then we multiply the buoyancy term by δ  for stable stratification when δ =1 
and  by  1-δ  for unstable stratification when δ =0.

                        Using these relations we rewrite the TKE and dissipation equations in the  
                      following  form:
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                          The finite difference equations  were  obtained  using  first-order approximation in 
time,  and centered-in-space differences for the vertical turbulent terms (second-
order approximation in space).  The implicit  numerical integration scheme was 
applied.  This scheme is used here for the stationary problem:
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Now we can re-write the system (9-10) in matrix form:

                          A W B W C W Dm m v m− +− + =1 1                                                                   (11)
                      
                          Equation (11) was solved numerically using factorization method.  The conditions 

of stability and positive  solution were fulfilled independently and turbulent kinetic 
energy and dissipation rate were kept positive for all conditions.

            
                        Reference
                        
                       Shnaydman V., Berkovich L. 2006 Atmospheric boundary modeling in     
                       numerical  prediction operations. Research Activity in Atmospheric and     
                       Oceanic  Modeling, 5-57
                        Jiang W, Zhou M, Xu M et al (2002) Study on development and   
                        application of a regional PBL numerical model. Boundary-Layer Meteorol     
                        104: 491-503


	                                        V.Shnaydman,    G.Stenchikov

