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1 Introduction

The Japan Meteorological Agency (JMA) has been
operating the JMA Non-hydrostatic Model (NHM) with
a horizontal resolution of 5km since March 2006. The
governing basic equations of NHM are the fully com-
pressible equations and written in flux form. A time
splitting method is used and the terms responsible for
the sound and gravity waves are treated implicitly in
the vertical direction and explicitly in the horizontal
direction. The governing equations are transformed
into a spherical curvilinear orthogonal coordinate and
the vertical terrain-following coordinate (Gal-Chen and
Somerville 1975).

The terrain-following transformation is linear and
written in as follows:

z = ζ + zs
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where ζ is the transformed vertical coordinate, zs is the
surface height, and zT is the model-top height.

This transformation has some advantages. A treat-
ment of the lower boundary condition of this transfor-
mation is quite simple. Since ζ is linearly related to z,
one-dimensional physical process such as atmospheric
radiation and cumulus convection scheme will be im-
plemented easily.

Since the coefficient of zs of this transformation is
not zero except at the model top, the constant-ζ lev-
els are not flat even in the upper atmosphere and this
non-orthogonal property would be a disadvantage. The
horizontal pressure gradient term and the horizontal ad-
vection term are split into the horizontal and vertical
derivative. Since the vertical grid spacing of NWP mod-
els is generally large in the upper atmosphere, the error
of the vertical difference would cause errors of the pres-
sure gradient force and the advection.

To reduce above disadvantage, a new hybrid vertical
terrain-following coordinate which is based on the same
approach as the η coordinate (Simmons and Burridge
1981) is implemented. It is transformed using following
equation

z = ζ + zsf(ζ).

The new transformation has the same advantages.
As f(ζ) is getting close to zero, the constant-ζ levels
become flat. Therefore the selection of the appropri-
ate function can reduce the disadvantage. The function
f(ζ) should satisfy f(0) = 1 and f(zT ) = 0 because
of the boundary condition. The function f(ζ) must be
second differentiable because the Christoffel’s symbols
require it and f ′(ζ) > −1/zs to make the transforma-
tion monotone.

2 Momentum Equations

The original momentum equations of NHM are as
follows (Saito et al. 2006):
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Here U, V and W represent the momentum compo-
nents and P the pressure perturbation. ADV and R
are the advection terms and residual terms including
the buoyancy term, respectively. Subscripts 1, 2 and 3
correspond to the x, y and ζ components, respectively.
Symbols m1 and m2 are the map factors while m3 is not
a map factor but a constant introduced for definition of

momentum. G
1

2 , G13 and G23 are metric tensors and
given by
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To introduce the hybrid vertical coordinate, above
equations are rewritten by using tensor analysis as fol-
lows:

∂U

∂t
+

m1

m2

„

∂P

∂x
+

∂G13P

∂ζ

«

= −ADV1 + R1,

∂V

∂t
+

m2

m1

„

∂P

∂y
+

∂G23P

∂ζ

«

= −ADV2 + R2,

∂W

∂t
+

1

m3

∂

∂ζ

„

P

G
1

2

«

= −ADV3 + R3.

Here, G
1

2 , G13 and G23 are written as follows:
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Only the pressure gradient terms are modified by the
introduction of the hybrid coordinate. The above equa-

tions correspond to the original equations if G
1

2 is in-
dependent of ζ. This means that the original equations
are available for the original coordinate transformation
(Gal-Chen linear transformation). Though the pressure
gradient terms are modified, the computational cost of
the hybrid coordinate is almost the same as that of the
original coordinate.



3 Experiment results and conclu-

sions

Idealised advection experiments with the original
and hybrid coordinates are carried out to evaluate the
computational error. The number of grid points is
301 × 7 × 50 with a horizontal resolution of 1 km. A
bell-shaped mountain with a height of 3000 m and a
x-direction width of 50 km is placed at the centre of the
domain. Initial potential temperature field and wind
field are horizontally uniform and ∂θ/∂z = 3 K/km,
u = v = 0 m/s (z < 10000 m) and u = 2.5 m/s and
v = 0 m/s (z > 12000 m). A moisture mass with a
width of 50 km and a thickness of 6000 m is placed 108
km west of the centre of the domain, at an altitude of
16000 m. This means that it will pass just over the
mountain at the forecast time of 12 hours. The time
step is 20 s and the time integration is carried out up to
24 hours. A fourth-order advection scheme with a flux
correction scheme is used.

The following function is selected,
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where zT = 21600, zl = 1000, zh = 11000 m and n = 3.
The coefficient of zs at the centre of the domain is shown
in Fig. 1. The coefficient by the hybrid coordinate is
almost zero at z = 16000 m while that by the original
coordinate is about 0.3.

The result of the experiment with the original co-
ordinate is shown in Fig. 2 and that with the hybrid
coordinate is shown in Fig. 3. The moisture masses at
t = 0, 12 and 24 h are drawn from left to right, respec-
tively. The shape of the moisture mass in the hybrid
coordinate is well-preserved while that in the original
coordinate is remarkably deformed.

The hybrid vertical coordinate is implemented into
NHM without the increase of the computational cost.
This coordinate can be also used as the Gal-Chen ver-
tical coordinate if f(ζ) = 1 − ζ/zT . The hybrid coor-
dinate and the new transformation function shown in
above will be in operation in May 2007.
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Figure 1: The coefficient of zs by the hybrid transfor-
mation function (solid line) and the original transforma-
tion function(dotted line) The x-axis is the coefficient
and the y-axis is the height.
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Figure 2: The result of the advection test with the
original vertical coordinate. The moisture masses at t =
0, 12 and 24 h are drawn from left to right, respectively.
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Figure 3: Same as in Figure 2 but with the hybrid
vertical coordinate


