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1. Introduction

Limited Area Models (LAMs) have been shown
capable to create small-scale features despite the fact
of being nested and initialized with coarse resolution
Global Circulation Models (GCM) or global analyses.
Based on an ensemble of LAM integrations, which
differ only in atmospheric and land-surface Initial
Conditions (IC), it has been shown that simulations
generated by the same set of Lateral Boundary
Conditions (LBC) stay partially correlated, regardless
of the integration time, unlike the case for global
models. The scale analysis of mean square difference
between members of an ensemble, performed by de
Elia et al. (2002), suggests that the correlation
asymptotes to values greater or equal than zero,
varying with length scale. For small scales, the
asymptotic value is close to zero, while for large
scales, driven by LBC, the asymptotic value is close to
1.

In this context, the ability of LAMs to serve as
‘intelligent’ interpolators of the driving fields is
determined by the LAM’s capacity to provide not only
meaningful information regarding small-scale
structures, but, also, that this information be
independent of small perturbations in IC. In this study
we perform a scale analysis of the ensemble mean of
an ensemble of LAM simulations. We will consider the
ensemble average as the part of the LAM’s solution
that is insensitive to small perturbations in IC and
thus determined only by LBC. As this part is not
affected by internal variability it will be thought of as
a deterministic component. The part dependent on IC
will be thought of as a stochastic component.

2. Experimental Set-up

The Canadian Regional Climate Model (CRCM),
described by Caya & Laprise, (1999) - with 45km
horizontal grid spacing (true at 60°N), 18 levels in the
vertical, 120x120 domain, centered over Montréal,
Canada - was employed to produce 20 three-month
simulations for June, July & August 1993 (for further
details see Alexandru et al., 2006). The CRCM was
nested within regridded coarse (T62) NCEP
reanalyses, with updating frequency of 1 per 6hrs. All
20 simulations were generated using identical LBC
and ocean surface, differing only in the IC used for
the atmospheric and land-surface fields. Each
simulation was initialized with a 24hrs time lag, the

first one starting on the 1st May 1993 at 00GMT, and
the last one on the 20th May at 00GMT – allowing at
least 10 days spin-up to assure that internal
variability is fully developed during the period of
interest. The nesting technique employed here was
derived from that proposed by Davis (1977). The
domain size was chosen to be neither too small,
which could disable small-scale creation (Leduc and
Laprise, 2006), nor too large, which could significantly
deviate large scales from driving fields (Miguez-Macho
et al, 2004). No large-scale nudging was applied.

The 2D spectral variances for selected pressure
levels were calculated using Discrete Cosine
Transform (DCT), firstly employed for NWP purposes
by Denis et al. (2002). The variances were then
binned into specific bands of 2D wave number
intensity, and, thus, expressed as simple functions of
1D spatial scale.

3. Methodology and Results

Let 

€ 

ϑ (ψm )  be the 1D spectral variance of a field

€ 

ψm  defined on the LAM grid, where 1≤m≤M denotes
the member of the ensemble, and let [ ] denotes the
ensemble average over all 

€ 

M  simulations. We define
the average spectral variance, 

€ 

V , as a mean of 

€ 

M
spectral variances computed for each of the members
of the ensemble. Thus, we can write:

€ 

V (k, p,t) ≡ ϑ ψ( )[ ]. (1)

The spectral variance of the ensemble mean is given

by

€ 

VENS (k, p,t) ≡ϑ ψ[ ]( ) , (2)

and, finally, the spectral variance of regridded NCEP
reanalyses by

€ 

VOBS(k, p,t) ≡ϑ ψOBS( ). (3)

Here k represents the 1D wave number, p is the
pressure level, and t is integration time. If, at any
length scale, individual runs have no spread among
them, then the variances given by (1) and (2)
become identical. Furthermore, at large-scales, where
no spread is expected to appear, any difference
between variances (2) and (3) is undesirable,
because it indicates that the LAM does not simulate
the observed amount of variance. On the contrary, at
small-scales, the positive difference between 

€ 

VENS  and

€ 

VOBS  implies that the downscaled information contains
a deterministic part. In particular, for small scales,
unresolved by the driving fields, a difference between



variances (1) and (2) indicates the stochastic part of
the downscaled variance, while a difference between
variances (2) and (3) indicates the component
independent of IC.

The variances given by equations (1), (2),
and (3), for geopotential at 925hPa, sampled every 6
hrs and averaged over 3 summer months of 1993 are
shown in Figure 1. It can be seen that for the largest
resolved scales there is a slight excess of variance in
both the individual runs and their ensemble average
relative to the reanalyses. We notice that this excess
was detected only under the 600hPa-level; in the
upper part of the troposphere we found a slight lack
of variance at those scales (not shown). For wave
numbers larger then 5 (~1100km) - the effective
resolution of reanalyses - the variance of reanalyses
should be equal zero as those scales are not
represented in the driving fields. Due to the
regridding noise and Gibbs effect of the DCT this is
kkkk

FIG. 1. Spectral variance of geopotential at 925hPa:
full line - average spectral variance of individual runs,
equation (1); dashed line - spectral variance of ensemble
mean, equation (2); dotted line - spectral variance of
reanalyses, equation (3). The variances were sampled every
6 hours and the sample mean for 3-month long period is
presented.

FIG. 2. Logarithm of spectral variance of geopotential
field at 925hPa: full thick line - average spectral variance of
individual run, equation (1); full thin line - spectral variance
of ensemble mean, equation (2); thin dotted line - spectral
variance of reanalyses, equation (3). Isolines are drawn for
four different values: -1.0, 1.0, 3.0, and 4.5.

not the case. A difference between 

€ 

V  and 

€ 

VENS
appears for wave numbers larger then 10 (~500km),
as a consequence of spread among the runs.
Furthermore, 

€ 

VENS  has a noticeably higher value then

€ 

VOBS , for all wave numbers larger then 5, implying
that a part of the downscaled variance is due to
small-scale structures common to all members of the
ensemble. It is worth noting that similar behaviour
was found at all levels, with a decrease of difference
between 

€ 

VENS  and 

€ 

VOBS  with height, (not shown).
The scale distribution of the temporal

evolution of variances given by equations (1), (2),
and (3) is shown in Figure 2. It can be seen that, for
the largest resolved scales of thousands of kms
(isolines of 4.5), the excess of the simulated variance
relative to the reanalyses is not systematic but
intermittent during periods of few days, thus
contributing to the temporal mean in Figure 1. The
isolines of –1.0 and 1.0, which represent the
behaviour of non-driven small-scales, show that the
difference between 

€ 

VENS  and 

€ 

VOBS  is present at all
times. On the contrary, the difference between 

€ 

V  and

€ 

VENS  exhibits more complicated behaviour, indicating
that the intensity of spread pulsates according to
weather pattern. We notice that the isolines of 3.0
exhibit little spread, except around day 48, when the
internal variability seems to penetrate inside driven
scales. This is clearly visible on the geopotential maps
of that day.

4. Conclusion

Our results suggest that the downscaled
information provided by the CRCM is partially
determined by the boundary conditions and partially
of stochastic nature (dependent on small,
uncontrollable changes in IC). Hence, the value added
by dynamical downscaling has to be sought in both
components. It is worth noting that the deterministic
component is stronger near the surface. The results
also show that the large-scale information is
sometimes modified inside the domain, and that this
tends to happen in all individual runs in the same
manner. This seems to suggest that the CRCM is
unable to reproduce some of the large-scale weather
patterns provided at the boundaries.
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