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Method: It is often claimed that searching the stationary solution of a full prognostic Turbulent Kinetic
Energy (TKE) scheme should in principle give a computation for vertical turbulent exchange coefficients
close to that of schemes simply inferring those coefficients from the local vertical gradients of wind and
potential temperature. We implicitly refer here either to the methods solving the Monin-Obukhov (MO)
implicit set of equations or to those using a local Richardson number, in the wake of the Louis (1979)
paper. To our knowledge however, there has never been an attempt to inverse the proposal, i.e. to find
the TKE prognostic equations that would have for stationary solution some already computed exchange
coefficients Km (for momentum) and Kh (for energy).

This note aims at this unexplored goal. Said differently, given an already well tuned scheme delivering
‘static’ vertical exchange coefficients, how can one introduce in the simplest possible way the missing phys-
ical items that are advection, TKE vertical ‘auto-advection’ and balance between production-destruction
on one hand and dissipation on the other hand? This problem could be attacked from several angles
but its trademark is to search a common ground between TKE and MO-type methods. Since this is ex-
actly what Redelsperger et al. (2001) (thereafter RMC01) did for creating a smooth transition between
the upper-air behaviour of a ‘full’ TKE scheme and surface similarity laws, we elected to just adapt
their method to the whole depth of the atmosphere. For this, an a-priori knowledge of the ‘stationary’
coefficients just replaces the choice of the MO functions. The procedure symbolically reads:

K̃m, K̃n ⇒ K̃∗ ⇒ Ẽ,KE , τε (1)

dE/dt = f(E, Ẽ,KE , τε) (2)

E ⇒ K∗ (3)

K∗, K̃∗, K̃m & K̃h ⇒ Km & Kh (4)

where tilded values refer to the ‘static’ part of the computations and non-tilded ones to the prognostic
aspects (including the last step of vertical exchange using the Equation (4) values of Km and Kh, some-
thing which will not be detailed here, since being unchanged in the procedure). E is the TKE, KE the
auto-diffusion coefficient and τε the relaxation time scale of the dissipation process (E/ε). Kn is the
neutral state equivalent of Km while K∗ is a coefficient co-dimensional to Km and Kn which we define as
being the mirror image of E in case the equations at neutrality would be applicable for the whole range
of stability conditions. Hence our problem is split into two parts: (i) solving the problem at neutrality
and (ii) finding an expression to compute K∗ from Km and Kn, knowing that we shall then finish the
exercise by using:

Km = K∗(K̃m/K̃∗) & Kh = K∗(K̃h/K̃∗) (5)

Coming back to the problem at neutrality, it writes (RMC01):
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with κ the Karman constant and lm the static-scheme-type mixing-length for momentum, not to be
confused with the TKE-type mixing-lengths LK/ε. As already hinted at, the last term of the first above
equation represents a simple version of the balance between shear plus buoyancy production-destruction
and dissipation, the Newtonian time scale being the one of the dissipation in the ‘full’ TKE formalism.
In order to match these various aspects we have (RMC01, only near the surface in their case):
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and (RMC01 again) we want AK = Aε. Then, introducing ν with

CKCε =
1

α2
= ν4 (11)

we finally get the very simple set of equations:
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where literature-reported measurements seem to indicate a value of 0.52 as the optimal one for ν.

Furthermore, studying the stability dependence of the various terms of the above equations and fol-
lowing again the guidelines of RMC01, it appears that K∗ =

√
KmKn is a good approximation of the

‘observed’ implicit behaviour of K∗.

Results: The scheme was implemented (in research mode) in the so-called CE version of the ALADIN
NWP model. It gives either neutrality or slightly improved wind scores at the top of the PBL, leads to
a reasonable distribution of E-values and appears rather stable. But its main advantage is probably its
capacity to separate numerical stability problems (already treated, see below), choice of adequate mixing

length values and the encompassing in Ẽ and in K∗ of all the needed information about the functional
dependency of the production-destruction mechanisms (i.e. more sophisticated formulae for the latter
could mimic the intrinsic ‘physics’ of complex ‘full’ TKE schemes, without changing the numerical frame-
work).

Discussion: Apart from the just mentioned flexibility-modularity issue, there are other advantages in
this way of formulating the problem. In case of a potentially stiff behaviour of the diffusion equations in
the vicinity of the neutral state, a so-called ‘anti-fibrillation’ specific treatment (alike the one of Bénard
et al., 2000) can be applied to the computation of the tilded value, something impossible in a fully prog-
nostic TKE scheme. The scheme is naturally discretised in a way that allows to have the E-values in the
middle of the model layers, this facilitating a semi-Lagrangian handling of the advection term common
with that of other prognostic variables, a quite important practical advantage. Of course the vertical
staggering with respect to the K-values (at the layers’ interfaces) might create a spurious vertical mode.
But inspection of the last two Equations of (12) shows that the welcome local proportionality between
KE and 1/τε allows to curb this danger through the choice of big enough values of lm (and hence of L)
with respect to the layer’s thicknesses.

The proposed scheme has a few common points with the one of Brinkop and Roeckner (1995) but,

apart from its reliance on the computation of K̃m and K̃h, (i) it allows to decouple the intensities of
diffusion and auto-diffusion, (ii) it treats separately the two types of stability dependence and (iii) it does
not require the change of variable in (

√
E) to offer a numerically stable solution.
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