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1. Introduction 
 More and more researchers are 
focusing on how to reduce the effects of 
initial errors on numerical prediction while 
others examined the effects of chaos in 
the atmosphere (Lorenz 1963) and 
diversity of numerical models.  As a 
result, four-dimensional variational data 
assimilation (4D-VAR) and ensemble 
prediction (EP) techniques have been 
developed. 
 The method of 4D-VAR (Lewis and 
Derber 1985; Talgrand and Courtier 1987) 
was developed to use observations at 
different spatial and temporal points to 
optimize model initial conditions while 
assuming a perfect model. 
 The EP technique (Tracton and Kalnay 
1993; Toth and Kalnay 1993) is based on 
the assumption that very small errors in 
the initial conditions can induce 
appreciable changes in the forecast. It 
also assumes that the numerical models 
are not perfect, each model having it own 
skill. The main problem in EP is how to 
generate the perturbations. Singular 
vector (Tracton and Kalnay 1993) and 
breeding of growing modes (Toth and 
Kalnay 1993) are some typical methods.  
 In this study, we combine 4D-VAR and 
EP techniques as an optimal-controlled 
ensemble prediction technique to predict 
ENSO events using an imperfect model 
and imprecise observations. 

 
2. The technique 
 If the prediction model is 
 
  (1) )( 1−= tt XMX
 
where M is the numerical model, Xt and 
Xt-1 are atmosphere states at time t and t-1 
respectively, and the reality at time t is Yt, 
the forecast error is  
 

 ttt YX −=ε  (2) 
 
The error includes two parts: one is due to 
the error of the model itself, another is 
induced by initial condition errors. In other 
words, the numerical model can only 
describe part of the atmospheric variation 
that can be written as the inner product of 
the model forecast variation δXt and 
forecast error εt as <εt, δXt>.  The aim of 
weather forecast is to minimize the mode 
 

Xt δε ,
 

 
According to theory of 4D-VAR, 
 

<εt, δXt> = <εt, LδX0> = <L*εt, δX0>, 
 
where L and L* are continuous linear 
operators of the model M and its adjoint 
respectively. In the adjoint model, this can 
be written as  
  tL εσ *=
 
Meanwhile, to minimize mode 
|| >< tt Xδε , || is equivalent to minimize 
mode || 0

* , Xt δεL ||, which can be 
achieved by introducing a disturbance 
Wσ  (where W is a weight coefficient) in 
the initial conditions. From the EP 
perspective, Wσ is the required 
disturbance. Here, the disturbance Wσ  
differs from the disturbance in the usual 
EP technique because it is an optimal 
value controlled by observations and the 
model itself using the 4D-VAR technique. 
On the other hand, (2) indicates that 
model forecast error is a function of the 
length of forecast time. Likewise, the 
disturbance Wσ is a function of forecast 
time. Therefore, the optimal-controlled EP 
technique can be described as using 
4D-VAR technique with a different length 



of forecast time to calculate a set of 
disturbances and to get a set of EP 
members. 
 
3. Model and results 
 The simple Cane-Zebiak air-sea 
coupled model (Cane et al. 1986) is used 
and its adjoint model is developed in this 
study. An optimal-controlled EP system is 
established based on the 4D-VAR system. 
Monthly-averaged sea-surface 
temperature anomaly (SSTA) from 1971 to 
1998 from the National Centers of 
Environmental Prediction (NCEP) and 
wind field at 1000 hPa from the reanalysis 
data of NCEP are used. EP members are 
formed by setting assimilation period as 3, 
6, 9, 12, 15, 18, 24, 27 and 30 months. 
There are 10 members including the 
control run (without disturbance in initial 
conditions) with 277 cases from June 
1973 to June 1996. Each case has 18 
months of NINO3 index forecast. 
 Figure. 1 gives the time variations of 
skill (correlation coefficient) of each 
member while Fig. 2 gives those of the 
control, EP and persistence forecast. In 
EP scheme 1, the average weight 
coefficient of each member is the same, 
while in EP scheme 2, the average weight 
coefficient of each member is calculated 
according to its skill as in Fig.1. Figure 3 is 
the mean square of NINO 3 index forecast 
error. The EP schemes have higher skill 
and lower errors (Figs. 2 and 3), 
especially in EP scheme 2. Therefore, the 
optimal-controlled EP technique can 
improve the forecasting skill evidently 
even using a simple numerical model. 
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Fig. 1.  NINO 3 forecast skill of each EP 
member (with different assimilation 
period). 
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Fig. 2.  NINO 3 index forecast skill of EP 
(schemes 1 and 2), control and 
persistence forecasting. 
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Fig. 3.  Mean square of NINO3 index 
forecast error. 
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