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Because of its size, the forecast error covariance matrix P/ for the model prognostic variables x is generally
modeled by choosing a different set of control variables v, related to x by a linear transformation, x = Lv,
so that the error covariance matrix for v is simple (e.g., diagonal). Generally the matrix L is split into a

balance operator K; and a remaining operator Pﬂl/Q.

L =K,p/'/’

(1)
K, accounts for the correlations between variables by transforming unbalanced variables x, into their
balanced counterparts (for instance by considering the geostrophic balance equation). P represents the
univariate spatial correlations and thus is a block-diagonal matrix with block matrices C,,. 7 denotes
the unbalanced variables of the model (temperature, humidity, vorticity, divergence). The square root of
the correlation matrices, C,,, may be represented by appropriate operators or filter functions, Cl/2

C, =Cl/2cl/? (2)

A common choice for C is a spectral transform [1], implying horizontally homogeneous and isotropic error
covariance functions. This choice has serious limitations, because error covariances are flow dependent,
and therefore their representation in data assimilation systems should be spatially varying. An alterna-
tive for representing C is to use digital filters in grid point space [2]. Digital filters can be implemented
efficiently for Gaussian covariance functions on regular orthogonal grids by an alternating direction ap-
proach. An efficient application of both methods on an icosahedral grid, as used by the global model
GME [3] of DWD, is difficult.

Weaver and Courtier [4] have proposed modeling the filter functions C,lq/ 2 by application of a diffusion
operator, i.e. integrating the diffusion equation over a time span T starting with the unbalanced fields
n(r = 0), with

an

5~ VevVn=0, (3)

This operator has been generalized in order to model non Gaussian correlation functions. Here a different
generalization is proposed:
I

5 ~ VA v —c(m)n(0) =0 (4)

This formulation differs from (3) by the additional source term ¢(7)n(0) . For small values of 7, the
coefficient ¢(7) controls the shape of the correlation function on the large scales (long integration times
T—7 of the diffusion equation), whereas for large values of 7 (small T—7), it controls the shape on the fine
scales. By choosing negative values of ¢(7) for 7 << T' and positive values for ¢ &~ T, correlation functions
that are negative on the large scales can be modeled. By choosing anisotropic diffusion coefficients &,
anisotropic correlation functions are obtained.

The number of steps required to integrate equations (3) or (4) numerically is limited by stability criteria.
However, the diffusion equation can be integrated efficiently using a multi-grid approach, by starting the
integrating of equation (4) on a coarse grid for 7 << T and then moving to finer grids for 7 ~ T. In
praxis the algorithm is as follows:
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Average the field 7(0) to the coarser grids.

Integrate the diffusion equation on the coarsest grid for a few (large) steps.

Interpolate the intermediate result to the next finer grid.

Integrate the diffusion equation for a few (smaller) steps. In practice the coefficients ¢(7) and x(7)
may be kept constant on each grid ¢, denoted ¢; and ;.

5. Repeat steps 3 and 4 until the finest grid is reached.

Ll

Correlation functions of various shapes may be approximated by a linear combination of the filter functions
y; with appropriate coefficients ¢;. The approach was tested on a 2-dimensional regular grid and is
illustrated below. In this example 8 grids were used (with grid spacing differing by a factor of 2) until
the coarsest grid was reached (one grid point only).

filter functions y1 ... y8 c=exp(—rxx2/1x*2)

EQ 10N 20N 30N 40N 50N BON 70N 80N 90N 100N 110N 120N
(cos(rxlc)+sin(rxlc) /(Ixlc)) = exp (-r/1) 6roS: CoLA S

a) Filter functions y; obtained by setting ¢ # 0 on grid
level ¢ only.

b) Gaussian correlation function approximated by a lin-
ear combination of the functions y; ... ys.

open circles: specified covariance function exp(—r2/I%)
crosses: correlation function obtained by applying the
approximated filter function.

filled circles: required filter function (square root of the
above covariance function).

open squares: approximated filter function.

filled squares: difference of the exact and approximated
filter function.

c) As b), but for a covariance function
0% 10N 20N 30N 40N 50N 60N  7ON  8ON  9ON 100N 110N 120N c= (COS(TIC) + Sln(’f'lc)/(llc)) exp(—r/l).

Up to now the multi-grid approach was motivated by the goal to yield an efficient operator representation
of the filter functions. The approach may be modified by defining not only the coefficients ¢; on the
hierarchical grid, but the control variables x; as well. Then, the control variables are representing
analysis increments on different scales at different locations, and the transformation L behaves like a
wavelet transformation.
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