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Outline 

 

Ø WGNE and Data Assimilation 

Ø OSSEs 
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WGNE and Data Assimilation (I) 
Ø WGNE 28:  

§  http://www.wmo.int/pages/about/sec/rescrosscut/documents/
WGNE_28_Final_Report.pdf 

Ø Data Assimilation and reanalysis: 
§  Critical elements are the importance of the assimilating models 

and the assimilation methods addressing reanalysis issues: 

•  long window, coupling of the earth system, cycling of 
background and model error covariances, bias correction 
across various instruments 

Ø Impact of observations: 
§  general recognition that additional metrics are needed beyond 

the ACC and RMS error traditional scores 

§  High impact weather and service delivery 
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WGNE and Data Assimilation (II) 
Ø Current trends in Data Assimilation: 

§  Variational analysis remains the most widely used technique 
operationally 

§  Ensemble techniques have much improved in maturity and most 
centres invest in ensemble data assimilations via various algorithms: 
ensemble of 4D-Vars, 4D ensemble Var, hybrid techniques, pure 
EnKF. 

§  One major concern: scalability 

•  ensemble techniques are agreed to be better at tackling than 
traditional variational techniques. 

§   Most centres invest in improving their use of satellite observations:  

•  advanced infrared sounders, in all sky conditions, and at 
increasingly high resolution, etc. 
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WGNE and Data Assimilation (III) 
Ø General discussions: 

§  WGNE and THORPEX DAOS 

•  Substantial data assimilation expertise in THORPEX DAOS WG 

•  This Working Group is likely to become part of the standing 
WWRP structures post THORPEX (after 2014) 

•  To avoid duplicating efforts, links should be through 
membership overlap 

t DAOS ex-officio member in WGNE  
§  Research on reanalysis techniques should be promoted 

§  WDAC could task WGNE and DAOS to work together to assist in 
modeling of co-variances and coupling issues.  

§  WDAC should also oversee the general issue of OSSE infrastructure 
in support of observational design for climate applications.  
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OSEs and OSSEs 
Ø There is a strong requirement for observing system impact 

assessments coming from both the WMO members (NMHSs), 
the space agencies and other managers of observing networks 

Ø It is essential to keep a visionary outlook, appropriate for the 
long-term evolution of the GOS and the realisation of the Vision 
for the GOS in 2025. The observation impact work should not 
be driven exclusively by the current political and budgetary 
situation. 

Ø OSEs remain the main tool to quantify impact assessment 
Ø OSSE (or flavours of it) capability could be an important step 

toward quantifying the future constellation vision  
Ø OSEs/OSSEs are widely used in NWP context: Are they fit to 

contribute to GCOS and others? 
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Internationally Collaborative Joint 
OSSEs  Progress At NOAA 

Michiko Masutani[1,2,#], Lars Peter Riishojgaard [2,$], Zaizhong Ma[2,$],  
Jack S. Woollen[1,+], Dave Emmitt[5], Sid Wood[5], Steve Greco[5], 

 Tong Zhu[3,@], Yuanfu  Xie[4] 
 

[1]NOAA/National Centers for Environmental Prediction (NCEP) 
[2]Joint Center for Satellite and Data Assimilation (JCSDA) 

[3]NOAA/ NESDIS/STAR, 
[4]NOAA/Earth System Research Laboratory (ESRL)    

[5]Simpson Weather Associates 
# Wyle Information Systems, McLean, VA, 

+IM Systems Group)IMSG), MD 
$Earth System Science Interdisciplinary Center, Univ. of Maryland, College Park,,  

@Cooperative Institute for Research in the Atmosphere (CIRA)/CSU, CO 
 
 

OSSE:Observing Systems Simulation Experiments 
http://www.emc.ncep.noaa.gov/research/JointOSSEs/ 
 

Some initiatives exist 
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Contribution from an OSSE Infrastructure 

 

Ø  Impact assessment for future missions 

Ø Objective way of establishing scientifically sound and 
technically realistic user requirements 

Ø  Tool for assessing performance impact of engineering 
decisions made throughout the development phases of a space 
program or system 

Ø  Preparation/early learning pre-launch tool for assimilation 
users of data from new sensors 
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Reference Result Verification NWP-System Observations 

Reference Result Verification NWP-System Observations 

Observing System Experiment (OSE) 

OSSE 

Real atmosphere 

Assimilation/ forecast 

Assimilation/ forecast 

Compare to reference  

Compare to reference 

Impact assessment 

Nature run 

Assimilation/ forecast 

Assimilation/ forecast 

Compare to reference 

Compare to reference 

Assimilation/ forecast Compare to reference 

Calibrate 

Impact assessment 
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OSSE issues 

 

Ø Realism of observations simulation 
§  Data coverage 

§  Observation error characteristics 

Ø Realism of the nature run 
§  Resolution 

§  Cloud representation 

§  Frequency of weather and/or climate events 
Ø Realism of the scenarii 

§  Simulation of tomorrow’s (observation modelling and DA) systems with today’s 
capabilities 

 

The credibility of an OSSE requires a careful assessment of a number of 
statistics that can be compared with a real system 
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Analysis metrics: Example: Square roots of zonal means of 
temporal variances of analysis increments 

T  OSSE T   Real 

U  OSSE U  Real 
Errico, 2012	
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Forecast metrics: example:  RMS fcst error (from Errico, 2012) 
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Other considerations 

Ø New techniques are maturing as complementary or 
as alternatives to brut force OSEs/OSSEs, aiming at 
assessing the information content of current or 
future observing systems 

 

Ø EDA-sensitivity based  
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Observing System Design: Optimising the number of 
GNSS RO measurements with EDA technique 
→ guidance for GNSS RO component of the future Global 

Observing System for NWP 
 
(1)  How does the impact of GNSS RO measurements scale with  

 the observation number?  
 
(2)  Is an apparent saturation limit in the observation impact? 

  
→  Using the Ensemble of data assimilations (EDA) technique to 

investigate the observation impact of simulated GNSS RO 
profiles (2000 to 128000 per day) 

       (Similar to Tan et al (2007) for ADM-AEOLUS) 
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Generation of simulated GNSS RO data 

Slide 15 
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12-hourly coverage of GNSS RO data 

Slide 16 

real data, N = 1157 simulated, N = 1000 
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12-hourly coverage of GNSS RO data 
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12-hourly coverage of GNSS RO data 
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N = 4000 

real data, N = 1157 simulated, N = 1000 

N = 32000 
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The EDA method – EDA spread 

→ Investigate how the EDA spread (the estimated analysis and 
forecast error variance) is changing when additional GNSS RO 
data are used → observation impact 

Ø  Study indicates 16000 GPSRO soundings as a guidance: 
feeback to WMO RRR 
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Averaged EDA spread - Analysis 
T (K) at 100 hPa: Analysis ensemble spread for June 8 - 27, 0 / 12 UTC  

EDA_2 

EDA_16 EDA_64 

EDA_8 
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Growing demand: Atmospheric Composition OSSEs 
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OSSEs: Summary (I) 
l  Require substantial resources 
l  Outcome critically depends on proper 

specification of observation error statistics 
(You get out what you put in) 

l  Have in the past sometimes been too optimistic 
(Models are more similar to each other than any 
of the models to reality) 

l  Require careful calibration (Does an OSE with 
simulated present day observation have the 
expected impact?) 

l  As OSSEs deal with future impact, the 
performance of the then operational observing- 
and NWP-systems needs to be accounted for. 
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OSSEs: Summary (II) 

Ø  Substantial stable funding is required. Spanning a period of 
several years. 

Ø  Highest possible quality and resolution required for Nature Run. 
With option to regenerate it. More than one period. 

Ø  Simulation of observations should be flexible, and not tied to 
generation of N.R. 

Ø  Key to success lies in careful simulation of observations, and 
their errors. The expertise of several groups may be required for 
this 

Ø  Use one (preferably several) mature data assimilation systems. 
Not the one used for the N.R. 

Ø  Calibration of OSSE derived impact against actual impact (for 
main current observing systems) is essential. 

Ø  Careful evaluation, and critical assessment of results. 
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OSSEs: Summary (III): Elements of an OSSE toolkit 
1)  Nature Run(s). One short at highest resolution. One longer at lower 

resolution. To be packaged in standard format and archived. 
Available to users via web-interface. Definition after consultation 
with users to meet a range of requirements. 

2)  Orbit simulators and generator of realistic observation distributions 
for terrestrial data. Relatively straight forward. 

3)  Observation simulator software. A dozen or more codes to simulate 
observations and their errors with realism. For current (and some) 
future observing systems. Gross errors? Involve data providers. 
Document the simulators thoroughly. 

4)  General interface between 1), 2), 3). Read N.R., get observation 
locations, interpolate N.R. to those locations, apply observation 
simulators, standard format output. 

Funding, coordination and management of such a concerted effort is 
required. Initiatives exist and should be consolidated. 

ECMWF estimates to ~10 person-year the required effort to sustain such 
an activity. 
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OSSEs: Summary (IV) 
Ø Full OSSEs are expensive and sharing Nature Runs and 

simulated observation saves costs 
Ø OSSE-based decisions have international stakeholders and 

OSSEs should be developed as joint global projects 
Ø Community ownership and oversight of OSSE capability is 

also  important for maintaining credibility 
Ø The EDA is an independent and simpler OSSE method that 

has been shown to be valuable, and complements traditional 
OSSEs 

Ø OSEs (especially in the context of reanalyses) remain an 
invaluable resource to document information content of 
observations and provide future guidance    
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THE END 
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