

CEOS WGClimate Update on ECV Inventory

Mark Dowell European Commission – Joint Research Centre mark.dowell@jrc.ec.europa.eu

Joint Research Centre

From WGClimate ToR

Review and assess, on behalf of CEOS, the generation of Fundamental Climate Data Records (FCDRs) and derived Essential Climate Variable (ECV) climate products supported by Member space agencies, complementary with existing entities and roles,

Undertake an analysis, of the extent to which the current status of production of satellite climate records meets the GCOS requirements, including an analysis of the consistency of definitions of ECVs

. . .

Why do we need a Climate Monitoring

Architecture?

Main "needs/usage scenarios" have emerged for a climate monitoring architecture:

- Assist in promotion of a common understanding of the implementation implications of meeting the various space-related climate monitoring requirements (e.g. from GCOS)
- To support an assessment of the degree to which the currently implemented systems meet the requirements (and the generation of an action plan to address identified shortfalls/gaps/duplication)
- To improve our understanding of the end-to-end information flows and dependencies (i.e. from sensing through to decision-making)

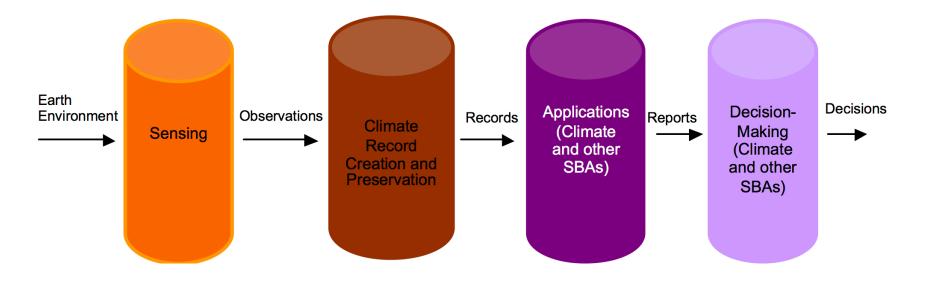
Joint activity CEOS, CGMS, WMO

EC – Mark Dowell, Chair ESA – Pascal Lecomte EUMETSAT – Joerg Schulz, Robert Husband JMA – Yoshihiko Tahara NASA – Richard Eckman (Eric Lindstrom) NOAA – John Bates, Suzanne Hilding, Chuck Wooldridge, (Mitch Goldberg) INPE – (Daniel Alejandro Vila) WMO – Jerome Lafeuille, Barbara Ryan, Tillmann Mohr, Hye Jin Lee

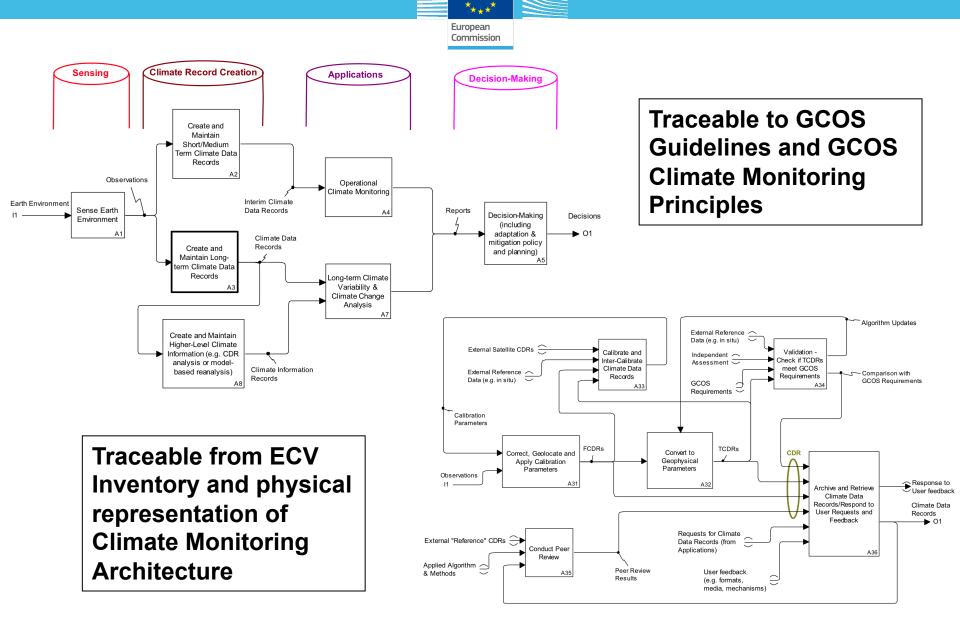
Review Group:

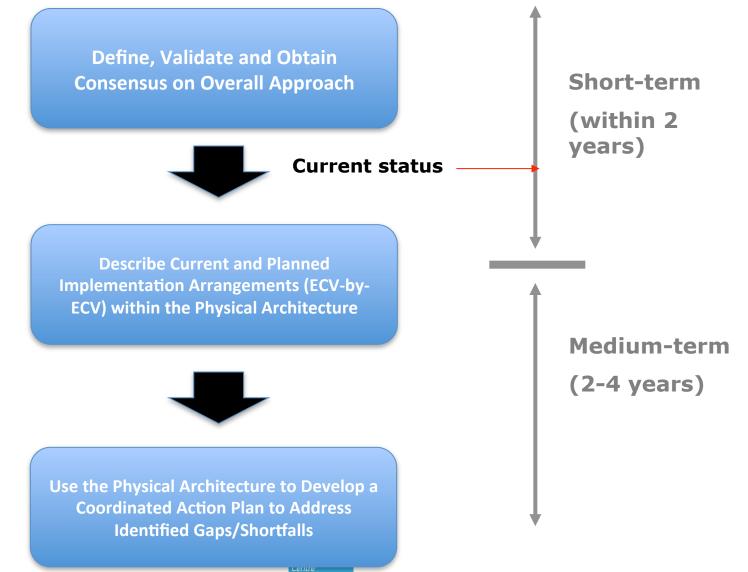
- GCOS
- GEO
- WCRP

Strategy Report on a Climate Monitoring Architecture


- Furopean Commission
- **1.** Executive Summary and recommendations
- 2. Introduction, Objectives & Targets
- 3. Climate Monitoring Principles, Requirements & Guidelines
- 4. State of the Art
- **5.** Beyond research to operations
- 6. Climate Architecture definition
- 7. Mechanisms for Interaction
- 8. Roadmap for way forward
- 9. Recommendations

This strategy document is also seen as a foundations for the **GFCS Monitoring and Observation Pillar**


Architecture Pillars



Logical representation

Way Forward

ECV Inventory Questionnaire

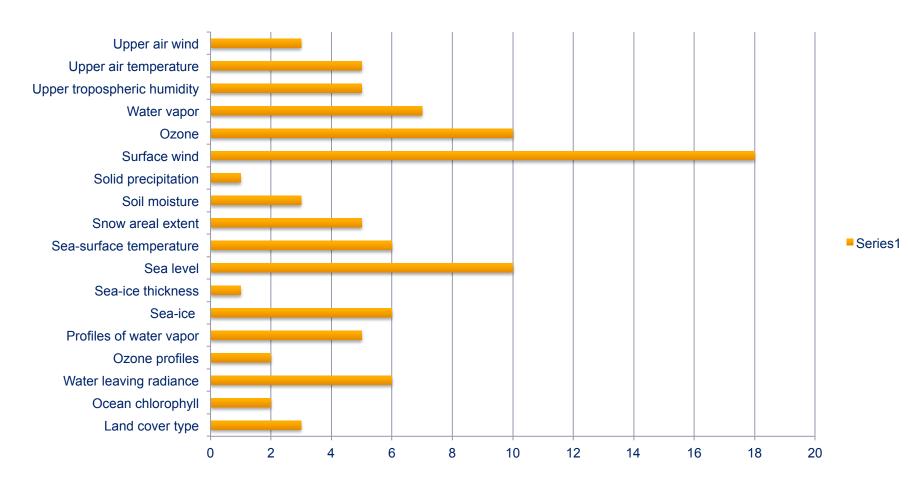
- Joint activity CEOS, CGMS and WMO
- Call released with CEOS MIM in May 2012, responses were due October 5th – extended to January 2013

European Commission

- Questionnaire form through a web interface.
- 45 total questions based on 5 topics (General, Usage, Stewardship, Properties, Access).
- Many questions use menu selections (12 menus).
 Some example menus are: Agency, Project, ECV, Satellite, Data Format.
- Responses were requested at the dataset level
- Addresses both existing/past missions and future/ planned mission in two separate questionnaires
- Each single entry takes on average 25 minutes to complete

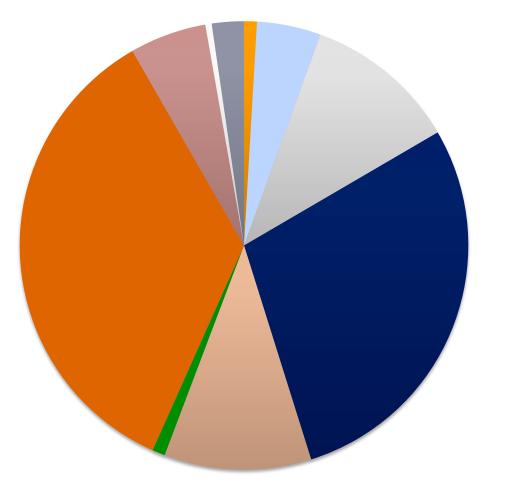
ECV Inventory – http://www.ecvinventory.com

Essential Climate Variable (ECV) Inventory


Home View ECV Records Editor LOGIN Administrator LOGIN

× Search Category Show All + ECV Record Id CDR ECV04 7 ECV Records Responder name Rainer Hollmann Responder email rainer.hollmann@dwd.de Data Set Identifier Yes, new release of CM SAF (CM-05) Atmosphere CDR_ECV01_10 Responsible organization IEUMETSAT CDR_ECV01_11 yes International Coordination CDR ECV01 12 SCOPE-CM CDR ECV01 13 Assessment body no CDR ECV01 14 Quality control organization no CDR_ECV01_15 CDR ECV01 16 Climate applications cloud feedback, radiation budget CDR_ECV01_17 Essential Climate Variable (ECV) Cloud amount CDR_ECV01_18 NOAA CDR_ECV01_19 Collection organization CDR ECV01 20 EUMETSAT CDR_ECV01_21 Calibration organization NOAA CDR_ECV01_3 Intercalibration organization NOAA CDR_ECV01_4 NOAA CDR ECV01 5 FCDR organization CDR_ECV01_6 EUMETSAT TCDR organization CDR_ECV01_7 CM SAF (DWD, KNMI, SMHI) CDR_ECV01_8 CDR ECV01 9 EUMETSAT GCOS Requirements Assessments organization CDR ECV02 1 CM SAF CDR_ECV02_2 EUMETSAT CDR_ECV02_3 Independent peer review organization CDR ECV02 4 Secretariat CDD 50/02 (

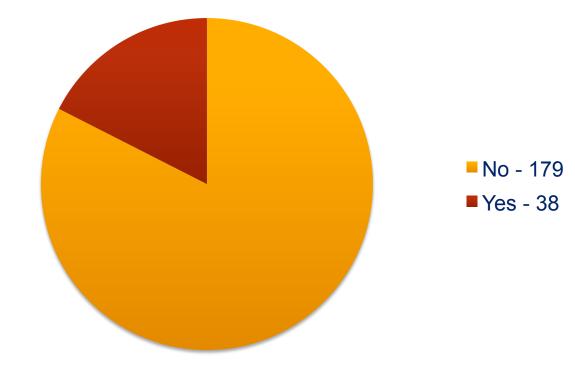
• Number of records per ECV, continued



Joint Research

ECV Inventory Statistics – Responsible Org

Number of records per responsible organization


Multiple or not selected

ECV Inventory Statistics – In-situ Cal Network

• Number of records that use an in-situ network for cal/val

ECV Inventory Statistics – ECV Timelines

	-	-	-	-	-							-	-	-	-		-		-	-	-	-	-	-			_	-		-		-	_	-	-		-	-		-		_	_	- 6		-	-		-	_	<u> </u>	_
ECV Type	1970	1971	1072	1974	1975	1976	1977	1978	1979	1980	1981	1982	1004	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1006	1997	1998	1999	2000	2001	2003	2004	2005	2006	2007	2008	2009	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	1707	2023	2024	2025	2026	2027
Glaciers and Ice Caps			Τ	Т	Τ	Т	Γ	Г	Γ		Τ	T	T		Т	Γ	Γ		Γ		1	1	1	1	1 1	1	1	1	1	1 1	1 1	1	1	1	1	1	1 1	1	1	1	Π		Τ	Τ	Т	Τ	Т	Т	Г	Г	Π	
Aerosol extinction profiles				Τ		Τ		Γ							Τ		Γ												Τ					Τ		Τ		Γ	Γ		\square		2	2	2	2	2	2	Γ	Γ	\square	\neg
Aerosol optical depth				Τ		Τ		Γ			1	2	2	2	2 2	2	2	2	2	2	2	2	2	3	3 8	8	8	8	8	8 8	3 9	9	9	9	9	9	8 2	2 2	1	1	Π				Τ	Τ	Τ		Γ	Γ	\square	\neg
Aerosol single scattering albedo																																											1	1	1	1	1	1				
black-sky and white-sky albedo											1	4	4	4	4 4	4	4	4	4	4	4	4	4	4	4 4	5	6	6	6	6 (5 7	7	7	6	6	6	, (1 3	2	1	1											
Cloud amount									1	1	1	5	7	8 8	8 8	8	8	8	8	8	8	8	8	8	8 8	8	8	8	8	9 9	9	9	9	9	9	9	7 7	7 6	6	4	4	1	2	1	1	1	1	1				
Cloud effective particle radius		Τ		Τ				1	2	2	2	2	2	2 :	2 2	2	2	2	2	2	2	2	2	2	2 2	2	2	2	2	2 2	2 2	2	2	2	2	2	1 1	1	1	1	1		1	1	1	1	1	1	Γ	Γ	\square	
Cloud optical depth		╡		T	T	\uparrow	T	1	1	1	1	8	4	4 4	4 4	4	4	4	4	4	4	4	4	4	4 4	4	4	4	4	4 4	4	4	4	4	4	4	1 1	1	1				1	1	1	1	1	1	T	Γ	Π	
Cloud top pressure and				Τ	T	Τ																							T		Γ					T		Γ							T		T		Γ	Γ	Π	\neg
temperature								2	2	2	2	7	8	9 9	9 9	9	9	9	9	9	9	9	9	9	9 9	9	9	9	9 1	0 10	10	10	10	10	10 1	0	5 5	5 5	4	1	1		1	1	1	1	1	1				
Cloud water path								1	1	1	1	7	7	,	, ,	8	8	8	8	8	8	8	8	8	8 8	8	8	8	8	8 8	3 9	9	9	9	9	9	7 (5 6	5	2	2											
со																																					1 1	1														\square
Earth radiation budget (top-of-					Γ	Γ									Τ																														Τ	Τ	Τ	Т	Γ	Γ	\square	\square
atmosphere and surface)			2	2 2	2	2 2	2 2	2	8	8	8	10 1	5 1	5 1	5 15	16	16	16	16	16	16	16	16 1	6 1	6 16	16	16	16	16 1	6 16	i 24	24	23	23	23 2	1	5 13	13	11	11	4											
High-resolution maps of land-				Т	Τ	Т	Γ				Τ	Т			Τ	Γ		Γ										Τ	Т							Т					Π				Τ	Τ	Τ	Т	Г	Γ	\square	Π
cover type, for the detection																																	1	1	1	1	1															
Ice velocity																				1	1	1	1	1	2 2	2	2	8	8	8 8	3 3	3	8	3	8	4	3 2	1	1	1												
Ice-sheet elevation changes																					1	1	1	1	1 1	1	1	1	1	1 1	L 1	1	1	1	1	1	1 1	L 1	1	1												

ECV Inventory Statistics – ECV Timelines

	_										_							E	uroj	bear	n_				_			_										_					_			_	_	_	_		
ECV Type	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1081	1982	1983	1984	1985	1986	1987	1988	1989	1001	1992	1993	1994	1995	1996	1997	1998	1999	2001	2002	2003	2004	2006	2007	2008	2009	2010	2012	2013	2014	2015	2016	2017	2018	CTOZ	2021	2022	2023	2024	2025	2027
Land-surface temperature	Π										Т	Τ	2	2	2	2	2	2	2	2	2 2	2 2	2 2	2	2	2	2	2	2 2	2	2	2	2 2	2	2	2	1	1	1 1	1	1		1	1	1 1	1 1	1	Π		Τ	\square
Liquid precipitation, solid precipitation	П									1	1	1 1	1	1	1	1	7	,	,	,	, ,	, ,	, ,	7	7	7	7	,	, ,	7	7	7	, ,	, ,	7	6	6	6	7 4	2	1	1	1	Τ		Τ	Γ			T	\square
Maps of burnt area	П										Τ								Τ					2	2	2	2	3	3 3	3	3	3	3 3	3	3	3	3	1	1					Τ	T	Τ	Γ			T	\square
Maps of LAI	П											2 2	2 2	3	3	3	3	3	3	3	3 3	3 3	3 3	3	3	8	3	4	4 4	4	4	4	4 4	4	4	4	4	4	3				1	1	1 1	1 1	1	Π		T	\square
Maps of the FAPAR	П											2 2	2 2	2	2	2	2	2	2	2	2 2	2 2	2 2	2	2	8	3	4	4 3	4	4	4	4 4	4	4	4	4	3	3				1	1	1 1	1 1	1	Π		T	\square
Moderate-resolution maps of land-cover type	Π									↑	Г		Γ						Τ								1	1	1 1	1	1	1	1 1	1	1	1	1	1	ı				1	1	1	1 1	1	1	1	1 1	1 1
Ocean chlorophyll	Π									T	T	T	T	Γ			1		T	╈	╈	T				1	1	1	1 1	1	1	1	1 1	1	1	1	1	1	1				1	1	1	1 1	1	Π		T	\Box
Water leaving radiance	Η		T	\square					╡	╈	T	T	T				1	1	╈	╈	╞	\uparrow	T			5	1	1	1 1	1	1	1	1 1	1	1	1	1	1	ı				1	1	1 1	1 1	1	\square	T	+	\top
Ozone profiles	Η			\square						1	1	1 1	1	1	1	1	1	1	1	1	1 1	1 1	1	1	1	1	1	1	1 1	1	1	1	1 1	1	1	1	2	2	2							Т	Г	Η	ſŤ	+	\top
Water vapor profiles	Η												1	1	1	1	2	3	3	3	4 4	4	4	4	4	4	4	4	4 4	4	4	4	4 4	4	4	4	2	2	3 1	1	1	1	1		+	\top	Γ	Π		+	\top
Sea-ice concentration/extent/edge	Η								1	1	1	1 1	1 2	2	2	2	3	3	3	3	3 3	3 3	3 3	3	3	3	3	3	3 3	3	3	3	3 3	3	3	3	1		1 1	1	1	1	2	1	1	1 1	1		ſŤ	+	\top
Sea-ice thickness	Η		1	1	1	1	1	1	1	1	1		. 1	1	1	1	1	1	$^{+}$	+	+	+	+				╈	╈	1 1				+											Τ		Τ	Γ	Π	ſŤ	+	\top
Sea-level	Π																					+	+				+	╈	5 5				+			6	6	2	2		\square	1	1		+	+		Ħ	ſŤ	+	\top
Sea-surface temperature	Π									T	T	T	T		1	1	1	1	1	1	2 2	2 2	2 2	2	2	3	3	3	3 3	4	4	4	4 4	4	4	4	4	3	4 1	1	1	1	2	1	1	1 1	1			+	\top
Snow areal extent	1	1	1	1	1	1	1	1	1	1	1	1 1	1 2	2	2	2	2	2	2	2	2 2	2 2	2 2	2	2	2	2	3	3 3	3	3	3	3 3	3	3	3	2		1 1	1	1	1	2	1	1	1 1	1	\square	ſŤ	+	\top
Soil-moisture map (up to 10cm soil depth)	Γ								1	1	1	1 1	1 1	1	1	1	1	1	1	1	1 1	1 1	1 1	1	1	1	1	1	1 1	2	2	2	2 2	2	2	2	2	1	2 1	1	1	1	1	Τ	Τ	Τ	Γ		T	+	\top
Solid precipitation	Π										Τ		Γ						T						1	1	1	1	1 1	1	1	1	1 1	1	1		T	Τ						\top	T	\top	\square	Π		+	\top
Surface wind	П										T						8	8	8	9 10) 9	9 9	9	10	10	12 1	11 1	2 1	2 11	12	12 1	12 1	2 12	11	11	11 1	10 1	.0	4 2	2	1	1	1	T	T	T	Γ			T	\square
Total column ozone	1	1	1	1	1	1	1		1	1	1	1 1	1 2	2	3	3	3	8	4	4	3 8	3 3	3 3	4	4	4	4	3	4 4	4	4	4	5 5	i 4	4	5	4	4	Γ					\top	T	T	\square			T	\square
Total column water vapor										T	T						5	6	6	6 (6 6	5 6	5 6	6	6	6	7	,	, ,	7	7	7	, ,	6	6	5	3	3	3 1	1	\square	1	1	T	T	T	Γ	Π	T	T	\top
Upper tropospheric humidity	Π								1	1	1	1 2	2 4	4	4	4	4	4	4	4	4 4	4	4	5	5	5	5	5	5 4	4	4	4	4 4	4	4	3	2	2	1 1			1	1	T	T	T	\square	Π	T	T	\top
Upper-air temperature	Π								1	1	1	1 1	1 2	2	2	2	2	2	2	2	2 2	2 2	2 2	2	2	2	2	2	2 2	2	2	2	2 5	5	5	5	4	4				1	1	\top	T	\top	Γ	\square	\square	\top	\top
Upper-air wind	Η	1	T	\square	\square		1			1	1	1 2	2 2	2	2	2	2	2	2	2	2 2	2 2	2 2	2	2	2	3	3	2 2	1	1	1	1 1	1	1	1			\top		\square	1	\uparrow	\uparrow	T	\top	\top			+	\top
15		'		'			1	1										10	hint																	GC	li'n	na	te	Me	et	tin	a'	Ġ	er	ıév	/a.	1 1	. 1	1	'

15

WGClimate Meeting, Geneva, February 2013

Joint Research Centre

- ~220 entries so far good representation across domains
- Much more response on past/current than on planned/future
- Potential for gap analysis to distinguish what is being observed but not used
- Initial quality control underway assessing completeness, consistency checks (incl. with MIM), domain experts broad overview

ECV Inventory data analysis - ideas

- Spatial temporal resolution vs. GCOS
 requirements check - justify our existence
- Comparative gap analysis for ECV products and sensors - missed opportunities
- Histograms comparison of length of ECV timeseries for "operational" and "research" agencies - myth buster
- Shared responsibilities pre-launch cal, postlaunch cal, validation – stewardship
- Cluster climate application field on GFCS
 Priorities & WCRP grand challenges justify
 our existence

- Identify number of agencies per ECV, comparison existing VCs – missed opportunities
- Number of citations of product references provided
 stewardship
- Coverage analysis global vs. regional match making
- Combining polar and geostationary missions: possible examples SST, precipitation, clouds, LST, albedo – missed opportunities
- Take two ECV products COVE analysis for intercalibration – match making

Links to WCRP/GCOS inventory initiatives

There is an opportunity to consider a central "database" of ECV product metadata

CEOS-CGMS-WMO maybe the the best "resourced" opportunity for this

European Commission

- BUT this should not negate the potential for multiple interfaces to this database
- CEOS-CGMS-WMO Inventory needs to:
- Verify consistency of GCOS/WCRP questionnaire with ECV Inventory
- Evaluate feasibility of extending to in-situ data This would then have to be vetted by CEOS and CGMS plenaries
- On in-situ ultimately CEOS-CGMS-WMO could provide the infrastructure/database but GCOS/WCRP Panels & WMO would be responsible for soliciting insitu contributions (i.e. handholding)

